
Quantum Mechanics Protect Security 

Online 

But the potential introduction of ultra-powerful quantum computers renders 

our personal information vulnerable to direct attack. [31] 

When future users of quantum computers need to analyze their data or run 

quantum algorithms, they will often have to send encrypted information to the 

computer. [30] 

Quantum systems were believed to provide perfectly secure data transmission 

because until now, attempts to copy the transmitted information resulted in an 

altered or deteriorated version of the original information, thereby defeating 

the purpose of the initial hack. [29] 

Researchers have developed a new type of light-enhancing optical cavity that 

is only 200 nanometers tall and 100 nanometers across. Their new nanoscale 

system represents a step toward brighter single-photon sources, which could 

help propel quantum-based encryption and a truly secure and future-proofed 

network. [28] 

Researchers at Tohoku University have, for the first time, successfully 

demonstrated the basic operation of spintronics-based artificial intelligence. 

[27] 

The neural structure we use to store and process information in verbal 

working memory is more complex than previously understood, finds a new 

study by researchers at New York University. [26] 

Surviving breast cancer changed the course of Regina Barzilay's research. The 

experience showed her, in stark relief, that oncologists and their patients lack 

tools for data-driven decision making. [25] 

New research, led by the University of Southampton, has demonstrated that a 

nanoscale device, called a memristor, could be used to power artificial systems 

that can mimic the human brain. [24] 

Scientists at Helmholtz-Zentrum Dresden-Rossendorf conducted electricity 

through DNA-based nanowires by placing gold-plated nanoparticles on them. 

In this way it could become possible to develop circuits based on genetic 

material. [23] 



Researchers at the Nanoscale Transport Physics Laboratory from the School of 

Physics at the University of the Witwatersrand have found a technique to 

improve carbon superlattices for quantum electronic device applications. [22] 

The researchers have found that these previously underestimated interactions 

can play a significant role in preventing heat dissipation in microelectronic 

devices. [21] 

LCLS works like an extraordinary strobe light: Its ultrabright X-rays take 

snapshots of materials with atomic resolution and capture motions as fast as a 

few femtoseconds, or millionths of a billionth of a second. For comparison, one 

femtosecond is to a second what seven minutes is to the age of the universe. 

[20] 

A ‘nonlinear’ effect that seemingly turns materials transparent is seen for the 

first time in X-rays at SLAC’s LCLS. [19] 

Leiden physicists have manipulated light with large artificial atoms, so-called 

quantum dots. Before, this has only been accomplished with actual atoms. It is 

an important step toward light-based quantum technology. [18] 

In a tiny quantum prison, electrons behave quite differently as compared to 

their counterparts in free space. They can only occupy discrete energy levels, 

much like the electrons in an atom - for this reason, such electron prisons are 

often called "artificial atoms". [17] 

When two atoms are placed in a small chamber enclosed by mirrors, they can 

simultaneously absorb a single photon. [16] 

Optical quantum technologies are based on the interactions of atoms and 

photons at the single-particle level, and so require sources of single photons 

that are highly indistinguishable – that is,  as identical as possible. Current 

single-photon sources using semiconductor quantum dots inserted into 

photonic structures produce photons that are ultrabright but have limited 

indistinguishability due to charge noise, which results in a fluctuating electric 

field. [14] 

A method to produce significant amounts of semiconducting nanoparticles for 

light-emitting displays, sensors, solar panels and biomedical applications has 

gained momentum with a demonstration by researchers at the Department of 

Energy's Oak Ridge National Laboratory. [13] 

A source of single photons that meets three important criteria for use in 

quantum-information systems has been unveiled in China by an international 

team of physicists. Based on a quantum dot, the device is an efficient source of 

photons that emerge as solo particles that are indistinguishable from each 



other. The researchers are now trying to use the source to create a quantum 

computer based on "boson sampling". [11] 

With the help of a semiconductor quantum dot, physicists at the University of 

Basel have developed a new type of light source that emits single photons. For 

the first time, the researchers have managed to create a stream of identical 

photons. [10] 

Optical photons would be ideal carriers to transfer quantum information over 

large distances. Researchers envisage a network where information is 

processed in certain nodes and transferred between them via photons. [9] 

While physicists are continually looking for ways to unify the theory of 

relativity, which describes large-scale phenomena, with quantum theory, 

which describes small-scale phenomena, computer scientists are searching for 

technologies to build the quantum computer using Quantum Information.  

In August 2013, the achievement of "fully deterministic" quantum 

teleportation, using a hybrid technique, was reported. On 29 May 2014, 

scientists announced a reliable way of transferring data by quantum 

teleportation. Quantum teleportation of data had been done before but with 

highly unreliable methods. 

The accelerating electrons explain not only the Maxwell Equations and the 

Special Relativity, but the Heisenberg Uncertainty Relation, the Wave-Particle 

Duality and the electron’s spin also, building the Bridge between the Classical 

and Quantum Theories.  

The Planck Distribution Law of the electromagnetic oscillators explains the 

electron/proton mass rate and the Weak and Strong Interactions by the 

diffraction patterns. The Weak Interaction changes the diffraction patterns by 

moving the electric charge from one side to the other side of the diffraction 

pattern, which violates the CP and Time reversal symmetry. 

The diffraction patterns and the locality of the self-maintaining 

electromagnetic potential explains also the Quantum Entanglement, giving it 

as a natural part of the Relativistic Quantum Theory and making possible to 

build the Quantum Computer with the help of Quantum Information. 
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Preface 
While physicists are continually looking for ways to unify the theory of relativity, which describes 

large-scale phenomena, with quantum theory, which describes small-scale phenomena, computer 

scientists are searching for technologies to build the quantum computer.  

Australian engineers detect in real-time the quantum spin properties of a pair of atoms inside a 

silicon chip, and disclose new method to perform quantum logic operations between two atoms. [5] 

Quantum entanglement is a physical phenomenon that occurs when pairs or groups of particles are 

generated or interact in ways such that the quantum state of each particle cannot be described 

independently – instead, a quantum state may be given for the system as a whole. [4] 

I think that we have a simple bridge between the classical and quantum mechanics by understanding 

the Heisenberg Uncertainty Relations. It makes clear that the particles are not point like but have a 

dx and dp uncertainty.  

 

How quantum mechanics is working to protect security online 
Scrambled and indecipherable messages are the back bone of the internet as we know it. 

Complex cryptography protects our bank accounts and identities from fraud, allowing us to safely 

buy and sell online without ever leaving the comfort of our living rooms. 

But the potential introduction of ultra-powerful quantum computers renders our personal 

information vulnerable to direct attack. 

Now researchers at the University of Bristol's Quantum Engineering Technology Labs (QETLabs) have 

developed tiny microchip circuits which exploit the strange world of quantum mechanics and 

provide a level of security enhanced by the laws of quantum physics. 



These devices distribute cryptographic keys using the quantum properties of entanglement, 

superposition and the absolute randomness provided by quantum behaviour, which is reproducible 

by no other means. 

Principal investigator Professor Mark Thompson said: "The system we have developed allows 

information to be exchanged using single photons of light in a quantum state. 

"If an eavesdropper hacks your transmission, they will collapse the fragile quantum states and the 

system will immediately alert you to their presence and terminate the transmission." 

This work, published in the February issue of Nature Communications, has demonstrated the world's 

first chip-to-chip quantum secured communication system, using microchip circuits just a few 

millimetres in size. 

This international collaboration, including researchers from Bristol, Glasgow and NiCT in Japan, used 

commercial semiconductor chip manufacturers to make their devices - in much the same way as 

Intel pattern silicon to make the latest central processing units (CPUs). 

However, instead of using electricity these miniaturised devices used light to encode information at 

the single photon level, providing encryption keys with an unlimited lifetime. 

Lead author Philip Sibson, added: "Our research opens the way to many applications that have, until 

now, been infeasible. 

"The technology is miniaturised for handheld devices, has enhanced functionality for 

telecommunications networks, and employs cost-effective manufacturing to feasibly deploy 

quantum key distribution technology in the home." 

The Bristol team has continued developing this technology, demonstrating an innovative design that 

allows the same functionality in a complementary metal-oxide-semiconductor (CMOS) compatible 

process, appearing in the February issue of Optica. 

While the first devices used a more expensive and complex manufacturing approach, these next 

generation devices are fabricated in standard silicon, paving the way for direct integration with 

microelectronic circuits. 

This will ultimately lead to integration in every day electrical devices, such as laptops and mobile 

phones. 

Dr Chris Erven explained: "As part of the UK Quantum Communications Hub, we are in the process of 

deploying these devices throughout the heart of the Bristol City fibre-optic network, allowing us to 

test out these ultra-secure communications systems in real-world scenarios." [31] 

The quantum computers of the future will work equally well with 

encrypted and unencrypted inputs 
When future users of quantum computers need to analyze their data or run quantum algorithms, 

they will often have to send encrypted information to the computer. 



Because of this requirement, researchers from DTU Physics and the University of Toronto have 

investigated whether a quantum computer can work equally well with encrypted and unencrypted 

signals. The results indicate that the efficiency remains almost unchanged. 

The development of a universal quantum computer is generally considered the ultimate goal within 

the area of physics called quantum information theory. If this goal is achieved it will enable huge 

progress within a long list of research fields where quantum effects are important. This could for 

example by in designing new medicine or new types of materials for construction or electronics. 

Inspired by the history of the development of the classical computer, the researchers expect that the 

first generation of quantum computers will be large, expensive and difficult to operate and maintain. 

For these reasons it is also expected that these devices will, at least initially, only be available to 

large organizations and governments. 

Can a blind quantum computer be useful? 

This leads to the idea of delegated quantum computing, where a user obtains access to a centralized 

quantum computer through a network, often thought of as a quantum version of the internet. If the 

user wants the request forwarded to the quantum computer to be secret, even to the quantum 

computer itself, she is able to encrypt them. The question is then if a quantum computer that is 

working in the dark, because the input is encrypted, is as efficient as when it is working on the plain 

input. 

A universal quantum computer consists of a number of so-called gates. More generally, a gate is a 

logical operation. Both quantum and ordinary computers make use of gates, though they behave 

quite differently. A classical logical operation could for example be an AND gate. This gate takes two 

inputs and returns an output based on the inputs. For example to inputs, each with the value 1, 

would return the output 1. 

It is possible to show mathematically which types of gates are necessary to give a quantum 

computer with the required properties, and the researchers have now investigated some of these 

gates to see how they react to the encryption procedure. 

By comparing the gate output for an encrypted and unencrypted input, the researchers have been 

able to measure how large an effect the encryption has on the gate output, and thusly the efficiency 

of the quantum computer. It turns out that there is no significant reduction in this efficiency. In 

other words, a quantum computer works equally well with encrypted and unencrypted signals. [30] 

Protecting quantum computing networks against hacking threats 
As we saw during the 2016 US election, protecting traditional computer systems, which use zeros 

and ones, from hackers is not a perfect science. Now consider the complex world of quantum 

computing, where bits of information can simultaneously hold multiple states beyond zero and one, 

and the potential threats become even trickier to tackle. Even so, researchers at the University of 

Ottawa have uncovered clues that could help administrators protect quantum computing networks 

from external attacks. 



"Our team has built the first high-dimensional quantum cloning machine capable of performing 

quantum hacking to intercept a secure quantum message," said University of Ottawa Department of 

Physics professor Ebrahim Karimi, who holds the Canada Research Chair in Structured Light. "Once 

we were able to analyze the results, we discovered some very important clues to help protect 

quantum computing networks against potential hacking threats." 

Quantum systems were believed to provide perfectly secure data transmission because until now, 

attempts to copy the transmitted information resulted in an altered or deteriorated version of the 

original information, thereby defeating the purpose of the initial hack. Traditional computing allows 

a hacker to simply copy and paste information and replicate it exactly, but this doesn't hold true in 

the quantum computing world, where attempts to copy quantum information-or qudits-result in 

what Karimi refers to as "bad" copies. Until now. 

For the first time, Professor Karimi's team was able to clone the photons that transmit information, 

namely the single carriers of light known as qubits, as well as quantum theory allows, meaning that 

the clones were almost exact replicas of the original information. However, in addition to 

undermining what was previously thought to be a perfect way of securely transmitting information, 

the researchers' analyses revealed promising clues into how to protect against such hacking. 

"What we found was that when larger amounts of quantum information are encoded on a single 

photon, the copies will get worse and hacking even simpler to detect," said Frédéric Bouchard, a 

University of Ottawa doctoral student and lead author of an open access publication that appeared 

this month in the renowned journal Science Advances. "We were also able to show that cloning 

attacks introduce specific, observable noises in a secure quantum communication channel. Ensuring 

photons contain the largest amount of information possible and monitoring these noises in a secure 

channel should help strengthen quantum computing networks against potential hacking threats." 

Karimi and his team hope that their quantum hacking efforts could be used to study quantum 

communication systems, or more generally to study how quantum information travels across 

quantum computer networks. To read their paper, visit the Science Advances website. [29] 

Ultra-small nanocavity advances technology for secure quantum-

based data encryption 
Researchers have developed a new type of light-enhancing optical cavity that is only 200 

nanometers tall and 100 nanometers across. Their new nanoscale system represents a step toward 

brighter single-photon sources, which could help propel quantum-based encryption and a truly 

secure and future-proofed network. 

Quantum encryption techniques, which are seen as likely to be central to future data encryption 

methods, use individual photons as an extremely secure way to encode data. A limitation of these 

techniques has been the ability to emit photons at high rates. "One of the most important figures of 

merit for single-photon sources is brightness—or collected photons per second—because the 

brighter it is, the more data you can transmit securely with quantum encryption," said Yousif Kelaita, 

Nanoscale and Quantum Photonics Lab, Stanford University, California. 



In the journal Optical Materials Express, Kelaita and his colleagues show that their new nanocavity 

significantly increased the emission brightness of quantum dots—nanometer-scale semiconductor 

particles that can emit single photons. 

The researchers created the new nanocavity by using highly reflective silver to coat the sides of a 

nanoscale semiconductor pillar sitting on a substrate. The silver makes the light bounce around 

inside the nanopillar, turning it into a very small optical cavity. The researchers say that the same 

design concept could be used to build nanocavities from other materials that are tailored for 

different single-photon emitters. 

Trapping light in a small space 

At nanometer scales, light interacts with materials in unique ways. One example is the Purcell effect, 

which enhances the emission efficiency of a quantum dot or other light emitter confined in a small 

cavity. Systems showing Purcell enhancement will emit more photons over a given amount of time, 

which could enable quantum encryption systems that operate faster than is possible now. 

Achieving Purcell enhancement benefits from extremely small cavities because energy is transferred 

between the light emitter and the cavity more quickly. It is also desirable to have a sufficiently high 

quality factor, meaning that the cavity's reflection allows the light to bounce around for a long time. 

"We demonstrated a new type of cavity with a volume multiple orders of magnitude lower than the 

current state of the art in solid-state systems," said Kelaita. "The system produces strong Purcell 

enhancement and high light collection efficiency at the same time, which leads to an overall increase 

in the brightness of the single-photon source." 

When the researchers tested the new nanocavities, they found that the quantum dots placed inside 

the nanocavities emitted more photons per second than quantum dots not located inside such a 

cavity. 

Because the nanocavities are open on top, emitted light can travel directly into air. Similar 

nanocavities created previously were topped with a metal coating that was undesirable for 

collecting emitted photons. The emission profile from the new nanocavities also matches well with 

standard microscope objective lenses, allowing a high percentage of the light to enter the lens. A 

mismatch between the emission profile and microscope objective lenses has caused problematic 

light loss in nanocavity systems developed previously. 

Making the tiny cavity 

The team used a modified fabrication technique to overcome the challenge of coating the 

nanopillars with metal. Nanostructures that are tall and skinny tend to experience what are called 

shadowing effects because nanofabrication techniques use a process in which metal falls straight 

down onto the device much like snow. 

"If you imagine snow falling on a tree, the snow will cling to itself and pile up on a branch in a way 

that it forms a larger width, or mound, than the branch itself," said Kelaita. "This also happens as 

metal is deposited on top of something like a pillar. As the metal clings to itself, it creates a larger 

mound than the pillar underneath it, preventing metal from falling underneath the parts that eclipse 

the pillar. In the end, this shadowing effect creates an air gap in the device." 



To solve this problem, the researchers simultaneously rotated and tilted the sample to coat all sides 

of the pillar at once. Even with this new approach, they had to be careful about the angle at which 

they deposited the metal to avoid forming a connection between the metal coating the sides of the 

pillar and the metal on top. If a connection was formed, the final step of ultrasonically removing the 

metal cap on top would be difficult or impossible. 

"Other groups working with metal should be interested in this technique because this shadowing 

effect occurs even for features that are completely encapsulated in metal," said Kelaita. 

Even better nanocavities 

The researchers are now working to create other kinds of nanocavities with even better 

characteristics. For example, they want to try to make nanocavities in diamond, which could allow 

single-photon sources that operate at room temperature, a key requirement for incorporating 

quantum encryption into consumer devices. 

They also want to combine the knowledge gained from this new work with an inverse design 

algorithm they recently developed to automatically design photonic devices integrated onto silicon 

chips. With the algorithm, engineers specify a desired function and the software provides 

instructions for making a structure that performs that function. [28] 

The world's first demonstration of spintronics-based artificial 

intelligence 
Researchers at Tohoku University have, for the first time, successfully demonstrated the basic 

operation of spintronics-based artificial intelligence. 

Artificial intelligence, which emulates the information processing function of the brain that can 

quickly execute complex and complicated tasks such as image recognition and weather prediction, 

has attracted growing attention and has already been partly put to practical use. 

The currently-used artificial intelligence works on the conventional framework of semiconductor-

based integrated circuit technology. However, this lacks the compactness and low-power feature of 

the human brain. To overcome this challenge, the implementation of a single solid-state device that 

plays the role of a synapse is highly promising. 

The Tohoku University research group of Professor Hideo Ohno, Professor Shigeo Sato, Professor 

Yoshihiko Horio, Associate Professor Shunsuke Fukami and Assistant Professor Hisanao Akima 

developed an artificial neural network in which their recently-developed spintronic devices, 

comprising micro-scale magnetic material, are employed (Fig. 1). The used spintronic device is 

capable of memorizing arbitral values between 0 and 1 in an analogue manner unlike the 

conventional magnetic devices, and thus perform the learning function, which is served by synapses 

in the brain. 

Using the developed network (Fig. 2), the researchers examined an associative memory operation, 

which is not readily executed by conventional computers. Through the multiple trials, they 

confirmed that the spintronic devices have a learning ability with which the developed artificial 



neural network can successfully associate memorized patterns (Fig. 3) from their input noisy 

versions just like the human brain can. 

The proof-of-concept demonstration in this research is expected to open new horizons in artificial 

intelligence technology - one which is of a compact size, and which simultaneously achieves fast-

processing capabilities and ultralow-power consumption. These features should enable the artificial 

intelligence to be used in a broad range of societal applications such as image/voice recognition, 

wearable terminals, sensor networks and nursing-care robots. [27] 

Researchers' discovery of new verbal working memory architecture 

has implications for AI 
The neural structure we use to store and process information in verbal working memory is more 

complex than previously understood, finds a new study by researchers at New York University. It 

shows that processing information in working memory involves two different networks in the brain 

rather than one—a discovery that has implications for the creation of artificial intelligence (AI) 

systems, such as speech translation tools. 

"Our results show there are at least two brain networks that are active when we are manipulating 

speech and language information in our minds," explains Bijan Pesaran, an associate professor at 

New York University's Center for Neural Science and the senior author of the research. 

The work appears in the journal Nature Neuroscience. 

Past studies had emphasized how a single "Central Executive" oversaw manipulations of information 

stored in working memory. The distinction is an important one, Pesaran observes, because current 

AI systems that replicate human speech typically assume computations involved in verbal working 

memory are performed by a single neural network. 

"Artificial intelligence is gradually becoming more human like," says Pesaran. "By better 

understanding intelligence in the human brain, we can suggest ways to improve AI systems. Our 

work indicates that AI systems with multiple working memory networks are needed." 

The paper's first author was Greg Cogan, an NYU postdoctoral fellow at the time of the study and 

now a postdoctoral fellow at Duke University; other co-authors were Professor Orrin Devinsky, 

director of the Comprehensive Epilepsy Center at NYU Langone Medical Center, Werner Doyle, an 

associate professor at NYU Langone's Department of Neurosurgery, Dan Friedman, an associate 

professor at NYU Langone's Department of Neurology, and Lucia Melloni, an assistant professor at 

NYU Langone's Department of Neurology. 

The study focused on a form of working memory critical for thinking, planning, and creative 

reasoning and involves holding in mind and transforming the information necessary for speech and 

language. 

The researchers examined human patients undergoing brain monitoring to treat drug-resistant 

epilepsy. Specifically, they decoded neural activity recorded from the surface of the brain of these 

patients as they were listening to speech sounds and speaking after a short delay. This method 

required the study's subjects to use a rule provided by the researchers to transform speech sounds 



they heard into different spoken utterances—for example, the patients were told to repeat the 

same sound they had heard while at other times the researchers instructed the patients to listen to 

the sound and make a different utterance. 

The researchers decoded the neural activity in each patient's brain as the patients applied the rule to 

convert what they heard into what they needed to say. The results revealed that manipulating 

information held in working memory involved the operation of two brain networks. One network 

encoded the rule that the patients were using to guide the utterances they made (the rule network). 

Surprisingly, however, the rule network did not encode the details of how the subjects converted 

what they heard into what they said. The process of using the rule to transform the sounds into 

speech was handled by a second, transformation network. Activity in this network could be used to 

track how the input (what was heard) was being converted into the output (what was spoken) 

moment-by-moment. 

Translating what you hear in one language to speak in another language involves applying a similar 

set of abstract rules. People with impairments of verbal working memory find it difficult to learn new 

languages. Modern intelligent machines also have trouble learning languages, the researchers add. 

"One way we can enhance the development of more intelligent systems is with a fuller 

understanding of how the human brain and mind works," notes Pesaran. "Diagnosing and treating 

working memory impairments in people involves psychological assessments. By analogy, machine 

psychology may one day be useful for diagnosing and treating impairments in the intelligence of our 

machines. This research examines a uniquely human form of intelligence, verbal working memory, 

and suggests new ways to make machines more intelligent." [26] 

Meeting of the minds for machine intelligence 
Surviving breast cancer changed the course of Regina Barzilay's research. The experience showed 

her, in stark relief, that oncologists and their patients lack tools for data-driven decision making. 

That includes what treatments to recommend, but also whether a patient's sample even warrants a 

cancer diagnosis, she explained at the Nov. 10 Machine Intelligence Summit, organized by MIT and 

venture capital firm Pillar. 

"We do more machine learning when we decide on Amazon which lipstick you would buy," said 

Barzilay, the Delta Electronics Professor of Electrical Engineering and Computer Science at MIT. "But 

not if you were deciding whether you should get treated for cancer." 

Barzilay now studies how smarter computing can help patients. She wields the powerful predictive 

approach called machine learning, a technique that allows computers, given enough data and 

training, to pick out patterns on their own—sometimes even beyond what humans are capable of 

pinpointing. 

Machine learning has long been vaunted in consumer contexts—Apple's Siri can talk with us because 

machine learning enables her to understand natural human speech—yet the summit gave a glimpse 

of the approach's much broader potential. Its reach could offer not only better Siris (e.g., Amazon's 

"Alexa"), but improved health care and government policies. 



Machine intelligence is "absolutely going to revolutionize our lives," said Pillar co-founder Jamie 

Goldstein '89. Goldstein and Anantha Chandrakasan, head of the MIT Department of Electrical 

Engineering and Computer Science (EECS) and the Vannevar Bush Professor of Electrical Engineering 

and Computer Science, organized the conference to bring together industry leaders, venture 

capitalists, students, and faculty from the Computer Science and Artificial Intelligence (CSAIL), 

Institute for Data, Systems, and Society (IDSS), and the Laboratory for Information and Decision 

Systems (LIDS) to discuss real-world problems and machine learning solutions. 

Barzilay is already thinking along those lines. Her group's work aims to help doctors and patients 

make more informed medical decisions with machine learning. She has a vision for the future 

patient in the oncologist's office: "If you're taking this treatment, [you'll see] how your chances are 

going to be changed." 

Machine senses 

Machine learning has already proven powerful. But Antonio Torralba, professor of electrical 

engineering and computer science, believes that machines can learn faster, and thereby do more. 

His team's approach mimics the way humans learn in infancy. "We just start playing with things and 

seeing how they feel," Torralba said. To illustrate, he showed the room a video of a baby turning 

over squeaky bubble wrap in her hands. Importantly, we notice the noises things make when we 

move them around, he said. 

To give machines a similar sensory experience of the world, a student of Torralba's recorded himself 

tapping more than a thousand objects with a wooden drumstick. Called "Greatest Hits," the sound 

collection captured the drumstick clanging ceramic cups, ruffling bushes, and splashing water. After 

feasting on these videos, a computer could start predicting the sounds of the world—essentially 

reflecting a grasp of its physics—all without explicit instruction. 

Videos of everyday scenes (sans drumstick) also prove deft teachers. Machines are usually guided to 

pick out objects by training them on annotated images. That means people would meticulously 

outline a photograph's individual objects, such as people, lamps, and bar stools, so that computers 

could learn to identify them. But Torralba and his team have found that by giving computers video 

complete with objects' sounds—such as a street's ambient noise or people talking—a machine's 

neural network could begin to pick out objects without any guidance at all. 

Torralba recounted how a machine trained this way begins to identify water, the sky, and people's 

faces. Machines become remarkably adroit at identifying infants, because "they make a very special 

noise," Torralba said. The recognition of sounds resides in a machine's artificial neurons called units. 

He continued: "There were a lot of units devoted to babies." 

Decision helpers 

Once a machine is educated, it can help experts make better decisions. 

Stefanie Jegelka, an assistant professor of electrical engineering and computer science, presented 

how to make machines learn faster and make predictions more reliably, by identifying maximally 

informative data. Her team has recently developed new techniques that make this process much 

more practical. 



Alternatively, savvy machines can help us evaluate policies. Tamara Broderick, an assistant professor 

of electrical engineering and computer science, showed how this works. In collaboration with MIT 

economist Rachael Meager, her team focused on the question of quickly and accurately quantifying 

uncertainty. For instance, is microlending, or giving people small loans to jumpstart businesses, is 

actually helping alleviate poverty. We need to understand the variation in returns on these loans to 

say. 

When we ask a computer to tell us how much more value a loan creates—for instance, $4 made for 

$3 invested—we can also use machine learning to evaluate how robust that outcome is. What would 

happen if we were to tweak the model? Broderick asked. "Are we going to get the same number out 

at the end? Or are we going to get fundamentally different numbers and therefore fundamentally 

different decisions about what to do—what policy to make?" Machine learning can guide the way. 

To our health 

But the application of machine intelligence most discussed at the summit was in health care. Mandy 

Korpusik, a graduate student in CSAIL who shared her work during a pitch session, described an app 

called Lana that serves as a personal nutritionist. You can tell her what you ate for lunch, and she 

can recommend what nutrient-rich foods to have in your next meal. 

Barzilay, the cancer survivor, wants not only to feed computers clinical reports, but medical scans. 

These images contain a wealth of information humans alone might be unable to articulate, she said. 

For example, a machine might be able to discern that given your mammogram, a particular 

treatment might be 90 percent likely to be effective. 

With colleague Tommi Jaakkola, professor of computer science and engineering, Barzilay is also 

working on extracting the machine's reasoning, a murkier but necessary endeavor. "Doctors, at least 

the ones at [Massachusetts General Hospital], are not happy just getting a number at the end," 

Barzilay said. "They need to know why." 

Intelligent machines can aid decision making beyond the doctor's office. Data scientists capable of 

implementing machine learning have become ubiquitous in government agencies, said Aman 

Bhandari in a fireside chat-style interview with Ash Ashutoush, CEO of information technology firm 

Actifio. Bhandari is now at pharmaceutical developer Merck, but worked at the White House in 

President Barack Obama's Office of Science and Technology Policy. During his tenure, the 

administration heavily pushed digitizing all medical records. 

"If you think about health care, we've moved from—and we're still moving from—this stone age of 

data collection, capture, production, and analysis into this possibly 'industrial era' of all of those 

things," Bhandari said. "So, the first phase is digitizing the system. The next phase is unleashing data 

from the U.S. government across every single sector." 

Jacqueline Xi, an electrical engineering and computer science senior, came away feeling enthusiastic 

about machine learning's possibilities. "Just to see everyone in the same room, and people who are 

founding startups, all here discussing these bigger ideas about how we can connect machine 

learning across all these groups, is really eye-opening," she said. "It's inspiring." [25] 



First demonstration of brain-inspired device to power artificial 

systems 
New research, led by the University of Southampton, has demonstrated that a nanoscale device, 

called a memristor, could be used to power artificial systems that can mimic the human brain. 

Artificial neural networks (ANNs) exhibit learning abilities and can perform tasks which are difficult 

for conventional computing systems, such as pattern recognition, on-line learning and classification. 

Practical ANN implementations are currently hampered by the lack of efficient hardware synapses; a 

key component that every ANN requires in large numbers. 

In the study, published in Nature Communications, the Southampton research team experimentally 

demonstrated an ANN that used memristor synapses supporting sophisticated learning rules in 

order to carry out reversible learning of noisy input data. 

Memristors are electrical components that limit or regulate the flow of electrical current in a circuit 

and can remember the amount of charge that was flowing through it and retain the data, even when 

the power is turned off. 

Lead author Dr Alex Serb, from Electronics and Computer Science at the University of Southampton, 

said: "If we want to build artificial systems that can mimic the brain in function and power we need 

to use hundreds of billions, perhaps even trillions of artificial synapses, many of which must be able 

to implement learning rules of varying degrees of complexity. Whilst currently available electronic 

components can certainly be pieced together to create such synapses, the required power and area 

efficiency benchmarks will be extremely difficult to meet -if even possible at all- without designing 

new and bespoke 'synapse components'. 

"Memristors offer a possible route towards that end by supporting many fundamental features of 

learning synapses (memory storage, on-line learning, computationally powerful learning rule 

implementation, two-terminal structure) in extremely compact volumes and at exceptionally low 

energy costs. If artificial brains are ever going to become reality, therefore, memristive synapses 

have to succeed." 

Acting like synapses in the brain, the metal-oxide memristor array was capable of learning and re-

learning input patterns in an unsupervised manner within a probabilistic winner-take-all (WTA) 

network. This is extremely useful for enabling low-power embedded processors (needed for the 

Internet of Things) that can process in real-time big data without any prior knowledge of the data. 

Co-author Dr Themis Prodromakis, Reader in Nanoelectronics and EPSRC Fellow in Electronics and 

Computer Science at the University of Southampton, said: "The uptake of any new technology is 

typically hampered by the lack of practical demonstrators that showcase the technology's benefits in 

practical applications. Our work establishes such a technological paradigm shift, proving that 

nanoscale memristors can indeed be used to formulate in-silico neural circuits for processing big-

data in real-time; a key challenge of modern society. 

"We have shown that such hardware platforms can independently adapt to its environment without 

any human intervention and are very resilient in processing even noisy data in real-time reliably. This 

new type of hardware could find a diverse range of applications in pervasive sensing technologies to 



fuel real-time monitoring in harsh or inaccessible environments; a highly desirable capability for 

enabling the Internet of Things vision." [24] 

Computers made of genetic material? Researchers conduct electricity 

using DNA-based Nanowires 
Tinier than the AIDS virus—that is currently the circumference of the smallest transistors. The 

industry has shrunk the central elements of their computer chips to fourteen nanometers in the last 

sixty years. Conventional methods, however, are hitting physical boundaries. Researchers around 

the world are looking for alternatives. One method could be the self-organization of complex 

components from molecules and atoms. Scientists at the Helmholtz-Zentrum Dresden-Rossendorf 

(HZDR) and Paderborn University have now made an important advance: the physicists conducted a 

current through gold-plated nanowires, which independently assembled themselves from single 

DNA strands. Their results have been published in the scientific journal Langmuir. 

At first glance, it resembles wormy lines in front of a black background. But what the electron 

microscope shows up close is that the nanometer-sized structures connect two electrical contacts. 

Dr. Artur Erbe from the Institute of Ion Beam Physics and Materials Research is pleased about what 

he sees. "Our measurements have shown that an electrical current is conducted through these tiny 

wires." This is not necessarily self-evident, the physicist stresses. We are, after all, dealing with 

components made of modified DNA. In order to produce the nanowires, the researchers combined a 

long single strand of genetic material with shorter DNA segments through the base pairs to form a 

stable double strand. Using this method, the structures independently take on the desired form. 

"With the help of this approach, which resembles the Japanese paper folding technique origami and 

is therefore referred to as DNA-origami, we can create tiny patterns," explains the HZDR researcher. 

"Extremely small circuits made of molecules and atoms are also conceivable here." This strategy, 

which scientists call the "bottom-up" method, aims to turn conventional production of electronic 

components on its head. "The industry has thus far been using what is known as the 'top-down' 

method. Large portions are cut away from the base material until the desired structure is achieved. 

Soon this will no longer be possible due to continual miniaturization." The new approach is instead 

oriented on nature: molecules that develop complex structures through self-assembling processes. 

Golden Bridges Between Electrodes 

The elements that thereby develop would be substantially smaller than today's tiniest computer chip 

components. Smaller circuits could theoretically be produced with less effort. There is, however, a 

problem: "Genetic matter doesn't conduct a current particularly well," points out Erbe. He and his 

colleagues have therefore placed gold-plated nanoparticles on the DNA wires using chemical bonds. 

Using a "top-down" method - electron beam lithography—they subsequently make contact with the 

individual wires electronically. "This connection between the substantially larger electrodes and the 

individual DNA structures have come up against technical difficulties until now. By combining the 

two methods, we can resolve this issue. We could thus very precisely determine the charge 

transport through individual wires for the first time," adds Erbe. 

As the tests of the Dresden researchers have shown, a current is actually conducted through the 

gold-plated wires—it is, however, dependent on the ambient temperature. "The charge transport is 



simultaneously reduced as the temperature decreases," describes Erbe. "At normal room 

temperature, the wires function well, even if the electrons must partially jump from one gold 

particle to the next because they haven't completely melded together. The distance, however, is so 

small that it currently doesn't even show up using the most advanced microscopes." In order to 

improve the conduction, Artur Erbe's team aims to incorporate conductive polymers between the 

gold particles. The physicist believes the metallization process could also still be improved. 

He is, however, generally pleased with the results: "We could demonstrate that the gold-plated DNA 

wires conduct energy. We are actually still in the basic research phase, which is why we are using 

gold rather than a more cost-efficient metal. We have, nevertheless, made an important stride, 

which could make electronic devices based on DNA possible in the future." [23] 

Scientists find technique to improve carbon superlattices for quantum 

electronic devices 
Researchers at the Nanoscale Transport Physics Laboratory from the School of Physics at the 

University of the Witwatersrand have found a technique to improve carbon superlattices for 

quantum electronic device applications. Superlattices are made up of alternating layers of very thin 

semiconductors, just a few nanometers thick. These layers are so thin that the physics of these 

devices is governed by quantum mechanics, where electrons behave like waves. In a paradigm shift 

from conventional electronic devices, exploiting the quantum properties of superlattices holds the 

promise of developing new technologies. 

The group, headed by Professor Somnath Bhattacharyya has been working for the past 10 years on 

developing carbon-based nano-electronic devices. 

"Carbon is the future in the electronics field and it soon will be challenging many other 

semiconductors, including silicon," says Bhattacharyya. 

The physics of carbon superlattices is more complex than that of crystalline superlattices (such as 

gallium arsenide), since the material is amorphous and carbon atoms tend to form chains and 

networks. The Wits group, in association with researchers at the University of Surrey in the UK, has 

developed a detailed theoretical approach to understand the experimental data obtained from 

carbon devices. The paper has been published in Scientific Reports on 19 October. 

"This work provides an understanding of the fundamental quantum properties of carbon 

superlattices, which we can now use to design quantum devices for specific applications," says lead 

author, Wits PhD student, Ross McIntosh. "Our work provides strong impetus for future studies of 

the high-frequency electronic and optoelectronic properties of carbon superlattices". 

Through their work, the group reported one of the first theoretical models that can explain the 

fundamental electronic transport properties in disordered carbon superlattices. 

Bhattacharyya started looking at the use of carbon for semiconductor applications almost 10 years 

ago, before he joined Wits University, when he and co-authors from the University of Surrey 

developed and demonstrated negative differential resistance and excellent high-frequency 



properties of a quantum device made up of amorphous carbon layers. This work was published in 

Nature Materials in 2006. 

McIntosh undertook the opportunity at honours level to measure the electrical properties of carbon 

superlattice devices. Now, as a PhD student and having worked extensively with theoretician Dr. 

Mikhail V. Katkov, he has extended the theoretical framework and developed a technique to 

calculate the transport properties of these devices. 

Bhattacharyya believes this work will have immense importance in developing Carbon-based high-

frequency devices. 

"It will open not only fundamental studies in Carbon materials, but it will also have industrial 

applications in the electronic and optoelectronic device sector," he says. 

Superlattices are currently used as state of the art high frequency oscillators and amplifiers and are 

beginning to find use in optoelectronics as detectors and emitters in the terahertz regime. While the 

high frequency electrical and optoelectronic properties of conventional semiconductors are limited 

by the dopants used to modify their electronic properties, the properties of superlattices can be 

tuned over a much wider range to create devices which operate in regimes where conventional 

devices cannot. 

Superlattice electronic devices can operate at higher frequencies and optoelectronic devices can 

operate at lower frequencies than their conventional counterparts.  

The lack of terahertz emitters and detectors has resulted in a gap in that region of the 

electromagnetic spectrum (known as the "terahertz gap"), which is a significant limitation, as many 

biological molecules are active in this regime. This also limits terahertz radio astronomy. 

Amorphous Carbon devices are extremely strong, can operate at high voltages and can be developed 

in most laboratories in the world, without sophisticated nano-fabrication facilities. New Carbon-

based devices could find application in biology, space technology, science infrastructure such as the 

Square Kilometre Array (SKA) telescope in South Africa, and new microwave detectors. 

"What was lacking earlier was an understanding of device modelling. If we have a model, we can 

improve the device quality, and that is what we now have," says Bhattacharyya. [22] 

Study shows particle collisions may explain overheated circuits, 

improve thermoelectric devices 
In the coming years, as more transistors are packed into ever smaller areas within computer chips, 

MIT engineers say cellphones, laptops, and other electronic devices may face a higher risk of 

overheating, as a result of interactions between electrons and heat-carrying particles called 

phonons. 

The researchers have found that these previously underestimated interactions can play a significant 

role in preventing heat dissipation in microelectronic devices.  

Their results are published today in the journal Nature Communications. 



In their experiments, the team used precisely timed laser pulses to measure the interactions 

between electrons and phonons in a very thin silicon wafer. As the concentration of electrons in the 

silicon increased, the more these electrons scattered phonons and prevented them from carrying 

heat away. 

"When your computer is running, it generates heat, and you want this heat to dissipate, to be 

carried out by phonons," says lead author Bolin Liao, a former graduate student in mechanical 

engineering at MIT. "If phonons are scattered by electrons, they're not as good as we thought they 

were in carrying heat out. This will create a problem that we have to solve as chips become smaller." 

On the other hand, Liao says this same effect may benefit thermoelectric generators, which convert 

heat directly into electrical energy. In such devices, scattering phonons, and thereby reducing heat 

leakage, would significantly improve their performance. 

"Now we know this effect can be significant when the concentration of electrons is high," Liao says. 

"We now have to think of how to engineer the electron-phonon interaction in more sophisticated 

ways to benefit both thermoelectric and microelectronic devices." 

Liao's co-authors include Gang Chen, the Carl Richard Soderberg Professor in Power Engineering and 

the head of the Department of Mechanical Engineering; Alexei Maznev, a senior research scientist in 

the Department of Chemistry; and Keith Nelson, the Haslam and Dewey Professor of Chemistry. 

Blocking flow 
In transistors made from semiconductor materials such as silicon, and electrical cables made from 

metals, electrons are the main agents responsible for conducting electricity through a material. A 

main reason why such materials have a finite electrical resistance is the existence of certain 

roadblocks to electrons' flow—namely, interactions with the heat-carrying phonons, which can 

collide with electrons, throwing them off their electricity-conducting paths. 

Scientists have long studied the effect of such electron-phonon interactions on electrons 

themselves, but how these same interactions affect phonons—and a material's ability to conduct 

heat—is less well-understood. 

"People hardly studied the effect on phonons because they used to think this effect was not 

important," Liao says. "But as we know from Newton's third law, every action has a reaction. We just 

didn't know under what circumstances this effect can become significant." 

Scatter and decay 

Liao and his colleagues had previously calculated that in silicon, the most commonly used 

semiconductor material, when the concentration of electrons is above 1019 per cubic centimeter, 

the interactions between electrons and phonons would strongly scatter phonons. And, they would 

reduce the material's ability to dissipate heat by as much as 50 percent when the concentration 

reaches 1021 per cubic centimeter. 

"That's a really significant effect, but people were skeptical," Liao says. That's mainly because in 

previous experiments on materials with high electron concentrations they assumed the reduction of 

heat dissipation was due not to electron-phonon interaction but to defects in materials. Such defects 



arise from the process of "doping," in which additional elements such as phosphorous and boron are 

added to silicon to increase its electron concentration. 

"So the challenge to verify our idea was, we had to separate the contributions from electrons and 

defects by somehow controlling the electron concentration inside the material, without introducing 

any defects," Liao says. 

The team developed a technique called three-pulse photoacoustic spectroscopy to precisely increase 

the number of electrons in a thin wafer of silicon by optical methods, and measure any effect on the 

material's phonons. The technique expands on a conventional two-pulse photoacoustic 

spectroscopy technique, in which scientists shine two precisely tuned and timed lasers on a material. 

The first laser generates a phonon pulse in the material, while the second measures the activity of 

the phonon pulse as it scatters, or decays. 

Liao added a third laser, which when shone on silicon precisely increased the material's 

concentration of electrons, without creating defects. When he measured the phonon pulse after 

introducing the third laser, he found that it decayed much faster, indicating that the increased 

concentration of electrons acted to scatter phonons and dampen their activity. 

"Very happily, we found the experimental result agrees very well with our previous calculation, and 

we can now say this effect can be truly significant and we proved it in experiments," Liao says. "This 

is among the first experiments to directly probe electron-phonon interactions' effect on phonons." 

Interestingly, the researchers first started seeing this effect in silicon that was loaded with 1019 

electrons per cubic centimeter—comparable or even lower in concentration than some current 

transistors. 

"From our study, we show that this is going to be a really serious problem when the scale of circuits 

becomes smaller," Liao says. "Even now, with transistor size being a few nanometers, I think this 

effect will start to appear, and we really need to seriously consider this effect and think of how to 

use or avoid it in real devices." [21] 

X-ray laser glimpses how electrons dance with atomic nuclei in 

materials 
From hard to malleable, from transparent to opaque, from channeling electricity to blocking it: 

Materials come in all types. A number of their intriguing properties originate in the way a material's 

electrons "dance" with its lattice of atomic nuclei, which is also in constant motion due to vibrations 

known as phonons. 

This coupling between electrons and phonons determines how efficiently solar cells convert sunlight 

into electricity. It also plays key roles in superconductors that transfer electricity without losses, 

topological insulators that conduct electricity only on their surfaces, materials that drastically change 

their electrical resistance when exposed to a magnetic field, and more. 

At the Department of Energy's SLAC National Accelerator Laboratory, scientists can study these 

coupled motions in unprecedented detail with the world's most powerful X-ray laser, the Linac 

Coherent Light Source (LCLS). LCLS is a DOE Office of Science User Facility. 



"It has been a long-standing goal to understand, initiate and control these unusual behaviors," says 

LCLS Director Mike Dunne. "With LCLS we are now able to see what happens in these materials and 

to model complex electron-phonon interactions. This ability is central to the lab's mission of 

developing new materials for next-generation electronics and energy solutions." 

LCLS works like an extraordinary strobe light: Its ultrabright X-rays take snapshots of materials with 

atomic resolution and capture motions as fast as a few femtoseconds, or millionths of a billionth of a 

second. For comparison, one femtosecond is to a second what seven minutes is to the age of the 

universe. 

Two recent studies made use of these capabilities to study electron-phonon interactions in lead 

telluride, a material that excels at converting heat into electricity, and chromium, which at low 

temperatures has peculiar properties similar to those of high-temperature superconductors.  

Turning Heat into Electricity and Vice Versa 

Lead telluride, a compound of the chemical elements lead and tellurium, is of interest because it is a 

good thermoelectric: It generates an electrical voltage when two opposite sides of the material have 

different temperatures. 

"This property is used to power NASA space missions like the Mars rover Curiosity and to convert 

waste heat into electricity in high-end cars," says Mariano Trigo, a staff scientist at the Stanford 

PULSE Institute and the Stanford Institute for Materials and Energy Sciences (SIMES), both joint 

institutes of Stanford University and SLAC. "The effect also works in the opposite direction: An 

electrical voltage applied across the material creates a temperature difference, which can be 

exploited in thermoelectric cooling devices." 

Mason Jiang, a recent graduate student at Stanford, PULSE and SIMES, says, "Lead telluride is 

exceptionally good at this. It has two important qualities: It's a bad thermal conductor, so it keeps 

heat from flowing from one side to the other, and it's also a good electrical conductor, so it can turn 

the temperature difference into an electric current. The coupling between lattice vibrations, caused 

by heat, and electron motions is therefore very important in this system. With our study at LCLS, we 

wanted to understand what's naturally going on in this material." 

In their experiment, the researchers excited electrons in a lead telluride sample with a brief pulse of 

infrared laser light, and then used LCLS's X-rays to determine how this burst of energy stimulated 

lattice vibrations. 

"Lead telluride sits at the precipice of a coupled electronic and structural transformation," says 

principal investigator David Reis from PULSE, SIMES and Stanford.  

"It has a tendency to distort without fully transforming – an instability that is thought to play an 

important role in its thermoelectric behavior.  With our method we can study the forces involved 

and literally watch them change in response to the infrared laser pulse." 

The scientists found that the light pulse excites particular electronic states that are responsible for 

this instability through electron-phonon coupling. The excited electrons stabilize the material by 

weakening certain long-range forces that were previously associated with the material's low thermal 

conductivity. 



"The light pulse actually walks the material back from the brink of instability, making it a worse 

thermoelectric," Reis says. "This implies that the reverse is also true – that stronger long-range 

forces lead to better thermoelectric behavior." 

The researchers hope their results, published July 22 in Nature Communications, will help them find 

other thermoelectric materials that are more abundant and less toxic than lead telluride. 

Controlling Materials by Stimulating Charged Waves 

The second study looked at charge density waves – alternating areas of high and low electron 

density across the nuclear lattice – that occur in materials that abruptly change their behavior at a 

certain threshold. This includes transitions from insulator to conductor, normal conductor to 

superconductor, and from one magnetic state to another. 

These waves don't actually travel through the material; they are stationary, like icy waves near the 

shoreline of a frozen lake.  

"Charge density waves have been observed in a number of interesting materials, and establishing 

their connection to material properties is a very hot research topic," says Andrej Singer, a 

postdoctoral fellow in Oleg Shpyrko's lab at the University of California, San Diego. "We've now 

shown that there is a way to enhance charge density waves in crystals of chromium using laser light, 

and this method could potentially also be used to tweak the properties of other materials." 

This could mean, for example, that scientists might be able to switch a material from a normal 

conductor to a superconductor with a single flash of light. Singer and his colleagues reported their 

results on July 25 in Physical Review Letters. 

The research team used the chemical element chromium as a simple model system to study charge 

density waves, which form when the crystal is cooled to about minus 280 degrees Fahrenheit. They 

stimulated the chilled crystal with pulses of optical laser light and then used LCLS X-ray pulses to 

observe how this stimulation changed the amplitude, or height, of the charge density waves. 

"We found that the amplitude increased by up to 30 percent immediately after the laser pulse," 

Singer says. "The amplitude then oscillated, becoming smaller and larger over a period of 450 

femtoseconds, and it kept going when we kept hitting the sample with laser pulses. LCLS provides 

unique opportunities to study such process because it allows us to take ultrafast movies of the 

related structural changes in the lattice." 

Based on their results, the researchers suggested a mechanism for the amplitude enhancement: The 

light pulse interrupts the electron-phonon interactions in the material, causing the lattice to vibrate. 

Shortly after the pulse, these interactions form again, which boosts the amplitude of the vibrations, 

like a pendulum that swings farther out when it receives an extra push.   

A Bright Future for Studies of the Electron-Phonon Dance 

Studies like these have a high priority in solid-state physics and materials science because they could 

pave the way for new materials and provide new ways to control material properties. 

With its 120 ultrabright X-ray pulses per second, LCLS reveals the electron-phonon dance with 

unprecedented detail. More breakthroughs in the field are on the horizon with LCLS-II – a next-



generation X-ray laser under construction at SLAC that will fire up to a million X-ray flashes per 

second and will be 10,000 times brighter than LCLS. 

"LCLS-II will drastically increase our chances of capturing these processes," Dunne says. "Since it will 

also reveal subtle electron-phonon signals with much higher resolution, we'll be able to study these 

interactions in much greater detail than we can now." [20] 

A 'nonlinear' effect that seemingly turns materials transparent is seen 

for the first time in X-rays at SLAC's LCLS 
Imagine getting a medical X-ray that comes out blank – as if your bones had vanished. That's what 

happened when scientists cranked up the intensity of the world's first X-ray laser, at the Department 

of Energy's SLAC National Accelerator Laboratory, to get a better look at a sample they were 

studying: The X-rays seemed to go right through it as if it were not there. 

This result was so weird that the leader of the experiment, SLAC Professor Joachim Stöhr, devoted 

the next three years to developing a theory that explains why it happened. Now his team has 

published a paper in Physical Review Letters describing the 2012 experiment for the first time. 

What they saw was a so-called nonlinear effect where more than one photon, or particle of X-ray 

light, enters a sample at the same time, and they team up to cause unexpected things to happen. 

"In this case, the X-rays wiggled electrons in the sample and made them emit a new beam of X-rays 

that was identical to the one that went in," said Stöhr, who is an investigator with the Stanford 

Institute for Materials and Energy Sciences at SLAC. "It continued along the same path and hit a 

detector. So from the outside, it looked like a single beam went straight through and the sample was 

completely transparent." 

This effect, called "stimulated scattering," had never been seen in X-rays before. In fact, it took an 

extremely intense beam from SLAC's Linac Coherent Light Source (LCLS), which is a billion times 

brighter than any X-ray source before it, to make this happen. 

A Milestone in Understanding How Light Interacts with Matter 

The observation is a milestone in the quest to understand how light interacts with matter, Stöhr 

said. 

"What will we do with it? I think we're just starting to learn. This is a new phenomenon and I don't 

want to speculate," he said. "But it opens the door to controlling the electrons that are closest to the 

core of atoms – boosting them into higher orbitals, and driving them back down in a very controlled 

manner, and doing this over and over again." 

Nonlinear optical effects are nothing new. They were discovered in the1960s with the invention of 

the laser – the first source of light so bright that it could send more than one photon into a sample at 

a time, triggering responses that seemed all out of proportion to the amount of light energy going in. 

Scientists use these effects to shift laser light to much higher energies and focus optical microscopes 

on much smaller objects than anyone had thought possible. 



The 2009 opening of LCLS as a DOE Office of Science User Facility introduced another fundamentally 

new tool, the X-ray free-electron laser, and scientists have spent a lot of time since then figuring out 

exactly what it can do. For instance, a SLAC-led team recently published the first report of nonlinear 

effects produced by its brilliant pulses. 

"The X-ray laser is really a quantum leap, the equivalent of going from a light bulb to an optical 

laser," Stöhr said. "So it's not just that you have more X-rays. The interaction of the X-rays with the 

sample is very different, and there are effects you could never see at other types of X-ray light 

sources." 

A Most Puzzling Result 

Stöhr stumbled on this latest discovery by accident. Then director of LCLS, he was working with 

Andreas Scherz, a SLAC staff scientist, who is now with the soon-to-open European XFEL in Hamburg, 

Germany, and Stanford graduate student Benny Wu to look at the fine structure of a common 

magnetic material used in data storage. 

To enhance the contrast of their image, they tuned the LCLS beam to a wavelength that would 

resonate with cobalt atoms in the sample and amplify the signal in their detector. The initial results 

looked great. So they turned up the intensity of the laser beam in the hope of making the images 

even sharper. 

That's when the speckled pattern they'd been seeing in their detector went blank, as if the sample 

had disappeared. 

"We thought maybe we had missed the sample, so we checked the alignment and tried again," Stöhr 

said. "But it kept happening. We knew this was strange – that there was something here that needed 

to be understood." 

Stöhr is an experimentalist, not a theorist, but he was determined to find answers. He and Scherz 

dove deeply into the scientific literature. Meanwhile Wu finished his PhD thesis, which described the 

experiment and its unexpected result, and went on to a job in industry. But the team held off on 

publishing their experimental results in a scientific journal until they could explain what happened. 

Stöhr and Scherz published their explanation last fall in Physical Review Letters. 

"We are developing a whole new field of nonlinear X-ray science, and our study is just one building 

block in this field," Stöhr said. "We are basically opening Pandora's box, learning about all the 

different nonlinear effects, and eventually some of those will turn out to be more important than 

others." [19] 

Researchers use quantum dots to manipulate light 
Leiden physicists have manipulated light with large artificial atoms, so-called quantum dots. Before, 

this has only been accomplished with actual atoms. It is an important step toward light-based 

quantum technology. The study was published on August 30th in Nature Communications. 

When you point a laser pointer at the screen during a presentation, an immense number of light 

particles races through the air at a billion kilometers per hour. They don't travel in a continuous flow, 



but in packages containing varying numbers of particles. Sometimes as many as four so-called 

photons pass by, and other times none at all. You won't notice this during your presentation, but for 

light-based quantum technology, it is crucial that scientists have control over the number of photons 

per package. 

Quantum dots 

In theory, you can manipulate photons with real individual atoms, but because of their small size, it 

is extremely hard to work with them. Now, Leiden physicists have discovered that the same principle 

goes for large artificial atoms—so-called quantum dots—that are much easier to handle. In fact, they 

managed to filter light beams with one photon per package out of a laser. "Another big advantage of 

quantum dots is that the system already works within nanoseconds," says first author Henk Snijders. 

"With atomic systems, you need microseconds, so a thousand times longer. This way, we can 

manipulate photons much faster." 

Quantum cryptography 

The ultimate goal for the research group led by Prof. Dirk Bouwmeester is to entangle many photons 

using quantum dots. This is essential, for example, in techniques like quantum cryptography. 

Snijders: "This research shows that we are already able to manipulate individual photons with our 

system. And the beauty is that in principle, we don't need large experimental setups. We can just 

integrate our quantum dots in small microchips." [18] 

'Artificial atom' created in graphene 
In a tiny quantum prison, electrons behave quite differently as compared to their counterparts in 

free space. They can only occupy discrete energy levels, much like the electrons in an atom - for this 

reason, such electron prisons are often called "artificial atoms". Artificial atoms may also feature 

properties beyond those of conventional ones, with the potential for many applications for example 

in quantum computing. Such additional properties have now been shown for artificial atoms in the 

carbon material graphene. The results have been published in the journal Nano Letters, the project 

was a collaboration of scientists from TU Wien (Vienna, Austria), RWTH Aachen (Germany) and the 

University of Manchester (GB). 

Building Artificial Atoms 

"Artificial atoms open up new, exciting possibilities, because we can directly tune their properties", 

says Professor Joachim Burgdörfer (TU Wien, Vienna). In semiconductor materials such as gallium 

arsenide, trapping electrons in tiny confinements has already been shown to be possible. These 

structures are often referred to as "quantum dots". Just like in an atom, where the electrons can 

only circle the nucleus on certain orbits, electrons in these quantum dots are forced into discrete 

quantum states. 

Even more interesting possibilities are opened up by using graphene, a material consisting of a single 

layer of carbon atoms, which has attracted a lot of attention in the last few years. "In most 

materials, electrons may occupy two different quantum states at a given energy. The high symmetry 

of the graphene lattice allows for four different quantum states. This opens up new pathways for 

quantum information processing and storage" explains Florian Libisch from TU Wien. However, 

creating well-controlled artificial atoms in graphene turned out to be extremely challenging. 



Cutting edge is not enough 

There are different ways of creating artificial atoms: The simplest one is putting electrons into tiny 

flakes, cut out of a thin layer of the material. While this works for graphene, the symmetry of the 

material is broken by the edges of the flake which can never be perfectly smooth. Consequently, the 

special four-fold multiplicity of states in graphene is reduced to the conventional two-fold one. 

Therefore, different ways had to be found: It is not necessary to use small graphene flakes to 

capture electrons. Using clever combinations of electrical and magnetic fields is a much better 

option. With the tip of a scanning tunnelling microscope, an electric field can be applied locally. That 

way, a tiny region is created within the graphene surface, in which low energy electrons can be 

trapped. At the same time, the electrons are forced into tiny circular orbits by applying a magnetic 

field. "If we would only use an electric field, quantum effects allow the electrons to quickly leave the 

trap" explains Libisch. 

The artificial atoms were measured at the RWTH Aachen by Nils Freitag and Peter Nemes-Incze in 

the group of Professor Markus Morgenstern. Simulations and theoretical models were developed at 

TU Wien (Vienna) by Larisa Chizhova, Florian Libisch and Joachim Burgdörfer. The exceptionally clean 

graphene sample came from the team around Andre Geim and Kostya Novoselov from Manchester 

(GB) - these two researchers were awarded the Nobel Prize in 2010 for creating graphene sheets for 

the first time. 

The new artificial atoms now open up new possibilities for many quantum technological 

experiments: "Four localized electron states with the same energy allow for switching between 

different quantum states to store information", says Joachim Burgdörfer. The electrons can preserve 

arbitrary superpositions for a long time, ideal properties for quantum computers. In addition, the 

new method has the big advantage of scalability: it should be possible to fit many such artificial 

atoms on a small chip in order to use them for quantum information applications. [17] 

Two atoms in an optical cavity can absorb one photon 
When two atoms are placed in a small chamber enclosed by mirrors, they can simultaneously absorb 

a single photon. So says an international team of researchers, which has found that the reverse 

process – two excited atoms emitting a single photon – is also possible. According to the team, this 

process could be used to transmit information in a quantum circuit or computer. 

Physicists have long known that a single atom can absorb or emit two photons simultaneously. 

These two-photon, one-atom processes are widely used for spectroscopy and for the production of 

entangled photons used in quantum devices. However, Salvatore Savasta of the University of 

Messina in Italy, together with colleagues at the RIKEN Institute in Japan, wondered if two atoms 

could absorb one photon. Savasta asked his PhD student at the time, Luigi Garziano, to simulate the 

process. When Garziano's simulation showed that the phenomenon was possible, Savasta was so 

excited that he "punched the wall," he told physicsworld.com. 

One for two? 

Their simulation found that the phenomenon occurs when the resonant frequency of the optical 

cavity containing the atoms is twice the transition frequency of an individual atom. For example, in a 

cavity whose resonant frequency is three times that of the atomic transition, three atoms can 



simultaneously absorb or emit a single photon. The optical-cavity's dimensions are determined by 

this resonant frequency, which must be a standing wave. According to the researchers' calculations, 

the two atoms would oscillate back and forth between their ground and excited states. Indeed, the 

atoms would first jointly absorb the photon, ending up in their excited states, before jointly emitting 

a single photon to return to their ground states. The cycle would then repeat. In addition, they found 

that the joint absorption and emission can occur with more than just two atoms. 

Quantum switch 

A two-atom, one-photon system could be used as a switch to transmit information in a quantum 

circuit, Savasta says. One atom would act as a qubit, encoding information as a superposition of the 

ground and excited states. To transmit the information outside of the cavity, the qubit would need 

to transfer the information to a photon in the cavity. The second atom would be used to control 

whether the qubit transmits the information. If the second atom's transition frequency is tuned to 

half the resonance frequency of the cavity, the two atoms could jointly absorb and emit a single 

photon, which would contain the encoded information to be transmitted.  

To ensure that the atoms do not re-adsorb the photon, the atom's resonant frequency can be 

changed by applying an external magnetic field. 

Savasta's group has begun to look for experimental collaborators to produce its theoretical 

prediction in the lab. While the experiment could be performed using actual atoms, Savasta plans to 

use artificial atoms: superconducting particles that have quantized energy levels and behave 

analogously as atoms, but whose transition energies can be more easily tuned by the 

experimentalist. In addition, controlling real atoms involves expensive technology, while artificial 

atoms can be created cheaply on solid-state chips. "Real atoms are only good for proof-of-principle 

experiments," he says. 

Savasta anticipates that their collaborators will be able to successfully perform the experiment in 

about a year. "We think that, especially if using superconducting qubits, that this experiment is well 

within the reach of present technology," he says. 

According to Tatjana Wilk at the Max Planck Institute for Quantum Optics in Garching, who was not 

involved in the current research, speaking to the American Physical Society's Physics Focus, she 

cautions that the excited states of the atoms may not last long enough to be useful in an actual 

quantum device. 

The research is published in Physical Review Letters. [16] 

Quantum processor for single photons 
"Nothing is impossible!" In line with this motto, physicists from the Quantum Dynamics Division of 

Professor Gerhard Rempe (director at the Max Planck Institute of Quantum Optics) managed to 

realise a quantum logic gate in which two light quanta are the main actors. The difficulty of such an 

endeavour is that photons usually do not interact at all but pass each other undisturbed. This makes 

them ideal for the transmission of quantum information, but less suited for its processing. The 

scientists overcame this steep hurdle by bringing an ancillary third particle into play: a single atom 

trapped inside an optical resonator that takes on the role of a mediator. "The distinct feature of our 



gate implementation is that the interaction between the photons is deterministic", explains Dr. 

Stephan Ritter. "This is essential for future, more complex applications like scalable quantum 

computers or global quantum networks." 

In all modern computers, data processing is based on information being binary-coded and then 

processed using logical operations. This is done using so-called logic gates which assign predefined 

output values to each input via deterministic protocols. Likewise, for the information processing in 

quantum computers, quantum logic gates are the key elements. To realise a universal quantum 

computer, it is necessary that every input quantum bit can cause a maximal change of the other 

quantum bits. The practical difficulty lies in the special nature of quantum information: in contrast to 

classical bits, it cannot be copied. Therefore, classical methods for error correction cannot be 

applied, and the gate must function for every single photon that carries information. 

Because of the special importance of photons as information carriers – for example, for 

communicating quantum information in extended quantum networks – the realisation of a 

deterministic photon-photon gate has been a long-standing goal. One of several possibilities to 

encode photonic quantum bits is the use of polarisation states of single photons. Then the states "0" 

and "1" of a classical bit correspond to two orthogonal polarisation states. In the two-photon gate, 

the polarisation of each photon can influence the polarisation of the other photon. As in the classical 

logic gate it is specified beforehand which input polarisation leads to which output polarisation. For 

example, a linear polarisation of the second photon is rotated by 90° if the first one is in the logic 

state "1", and remains unchanged if the first one is in "0". In contrast to classical logic gates, which 

would be fully specified by such a description, a quantum gate can take on an infinite number of 

possible input states. The quantum logic gate has to create the correct combination of output states 

for each one of these. 

In the experiment presented here two independently polarised photons impinge, in quick 

succession, onto a resonator which is made of two high-reflectivity mirrors.  

Inside a single rubidium atom is trapped forming a strongly coupled system with the resonator. The 

resonator amplifies the light field of the impinging photon at the position of the atom enabling a 

direct atom-photon interaction. As a result, the atomic state gets manipulated by the photon just as 

it is being reflected from the mirror. This change is sensed by the second photon when it arrives at 

the mirror shortly thereafter. 

After their reflection, both photons are stored in a 1.2-kilometre-long optical fibre for some 

microseconds. Meanwhile, the atomic state is measured. A rotation of the first photon's polarisation 

conditioned on the outcome of the measurement enables the back action of the second photon on 

the first one. "The two photons are never at the same place at the same time and thus they do not 

see each other directly. Nevertheless, we achieve a maximal interaction between them", explains 

Bastian Hacker, PhD student at the experiment. 

The scientists could prove experimentally that – depending on the choice of the photons' 

polarisations – either the first photon affects the second or vice versa. To this end, they measured 

the polarisation states of the two outgoing photons for different input states. From these, they 

generated "truth tables" which correspond to the expected gate operations and thus demonstrate 

the diverse operational modes of the photon-photon gate. 



The case when the input polarisation of the two photons is chosen such that they influence each 

other is of particular interest: Here the two outgoing photons form an entangled pair. "The 

possibility to generate entanglement fundamentally distinguishes a quantum gate from its classical 

counterpart. One of the applications of entangled photons is in the teleportation of quantum 

states", explains Stephan Welte, PhD student at the experiment. 

The scientists envision that the new photon-photon gate could pave the way towards all-optical 

quantum information processing. "The distribution of photons via an optical quantum network 

would allow linking any number of network nodes and thus enable the setup of a scalable optical 

quantum computer in which the photon-photon gate plays the role of a central processing unit 

(CPU)", explains Professor Gerhard Rempe. [15] 

The path to perfection: Quantum dots in electrically-controlled 

cavities yield bright, nearly identical photons 
Optical quantum technologies are based on the interactions of atoms and photons at the single-

particle level, and so require sources of single photons that are highly indistinguishable – that is, as 

identical as possible. Current single-photon sources using semiconductor quantum dots inserted into 

photonic structures produce photons that are ultrabright but have limited indistinguishability due to 

charge noise, which results in a fluctuating electric field. Conversely, parametric down conversion 

sources yield photons that while being highly indistinguishable have very low brightness. Recently, 

however, scientists at CNRS - Université Paris-Saclay, Marcoussis, France; Université Paris Diderot, 

Paris, France; University of Queensland, Brisbane, Australia; and Université Grenoble Alpes, CNRS, 

Institut Néel, Grenoble, France; have developed devices made of quantum dots in electrically-

controlled cavities that provide large numbers of highly indistinguishable photons with strongly 

reduced charge noise that are 20 times brighter than any source of equal quality. The researchers 

state that by demonstrating efficient generation of a pure single photon with near-unity 

indistinguishability, their novel approach promises significant advances in optical quantum 

technology complexity and scalability. 

Dr. Pascale Senellart and Phys.org discussed the paper, Near-optimal single-photon sources in the 

solid state, that she and her colleagues published in Nature Photonics, which reports the design and 

fabrication of the first optoelectronic devices made of quantum dots in electrically controlled 

cavities that provide bright source generating near-unity indistinguishability and pure single 

photons. "The ideal single photon source is a device that produces light pulses, each of them 

containing exactly one, and no more than one, photon. Moreover, all the photons should be 

identical in spatial shape, wavelength, polarization, and a spectrum that is the Fourier transform of 

its temporal profile," Senellart tells Phys.org. "As a result, to obtain near optimal single photon 

sources in an optoelectronic device, we had to solve many scientific and technological challenges, 

leading to an achievement that is the result of more than seven years of research." 

While quantum dots can be considered artificial atoms that therefore emit photons one by one, she 

explains, due to the high refractive index of any semiconductor device, most single photons emitted 

by the quantum dot do not exit the semiconductor and therefore cannot be used. "We solved this 

problem by coupling the quantum dot to a microcavity in order to engineer the electromagnetic field 

around the emitter and force it to emit in a well-defined mode of the optical field," Senellart points 



out. "To do so, we need to position the quantum dot with nanometer-scale accuracy in the 

microcavity." 

Senellart notes that this is the first challenge that the researchers had to address since targeting the 

issue of quantum dots growing with random spatial positions.  

"Our team solved this issue in 20081 by proposing a new technology, in-situ lithography, which 

allows measuring the quantum dot position optically and drawing a pillar cavity around it. With this 

technique, we can position a single quantum dot with 50 nm accuracy at the center of a micron-

sized pillar." In these cavities, two distributed Bragg reflectors confine the optical field in the vertical 

direction, and the contrast of the index of refraction between the air and the semiconductor 

provides the lateral confinement of the light. "Prior to this technology, the fabrication yield of 

quantum dot cavity devices was in the 10-4 – but today it is larger than 50%." The scientists used this 

technique to demonstrate the fabrication of bright single photon sources in 20132, showing that the 

device can generate light pulses containing a single photon with a probability of 80% – but while all 

photons had the same spatial shape and wavelength, they were not perfectly identical. 

"Indeed, for the photons to be fully indistinguishable, the emitter should be highly isolated from any 

source of decoherence induced by the solid-state environment.  

However, our study showed that collisions of the carriers with phonons and fluctuation of charges 

around the quantum dot were the main limitations." To solve this problem, the scientists added an 

electrical control to the device, such that the application of an electric field stabilized the charges 

around the quantum dot by sweeping out any free charge. This in turn removed the noise. 

Moreover, she adds, this electrical control allows tuning the quantum dot wavelength – a process 

that was previously done by increasing temperature at the expense of increasing vibration. 

"I'd like to underline here that the technology described above is unique worldwide," Senellart 

stresses. "Our group is the only one with such full control of all of the quantum dot properties. That 

is, we control emission wavelength, emission lifetime and coupling to the environment, all in a fully 

deterministic and scalable way." 

Specifically, implementing control of the charge environment for quantum dots in connected pillar 

cavities, and applying an electric field on a cavity structure optimally coupled to a quantum dot, 

required significant attention. "We had strong indications back in 2013 that the indistinguishability 

of our photons was limited by some charge fluctuations around the quantum dot: Even in the 

highest-quality semiconductors, charges bound to defects fluctuate and create a fluctuating electric 

field3. In the meantime, several colleagues were observing very low charge noise in structures 

where an electric field was applied to the quantum dot – but this was not combined with a cavity 

structure." The challenge, Senellart explains, was to define a metallic contact on a microcavity 

(which is typically a cylinder with a diameter of 2-3 microns) without covering the pillar's top surface. 

"We solved this problem by proposing a new kind of cavity – that is, we showed that we can actually 

connect the cylinder to a bigger frame using some one-dimensional bridges without modifying too 

much the confinement of the optical field." This geometry, which the researchers call connected 

pillars, allows having the same optical confinement as an isolated pillar while defining the metallic 



contact far from the pillar itself. Senellart says that the connected pillars geometry was the key to 

both controlling the quantum wavelength of dot and efficiently collecting its emission4. 

In demonstrating the efficient generation of a pure single photon with near-unity 

indistinguishability, Senellart continues, the researchers had one last step – combining high photon 

extraction efficiency and perfect indistinguishability – which they did by implementing a resonant 

excitation scheme of the quantum dot. "In 2013, Prof. Chao-Yang Lu's team in Hefei, China showed 

that one could obtain photons with 96% indistinguishability by exciting the quantum dot state in a 

strictly resonant way5. Their result was beautiful, but again, not combined with an efficient 

extraction of the photons. The experimental challenge here is to suppress the scattered light from 

the laser and collect only the single photons radiated by the quantum dot." 

Senellart adds that while removing scattered photons when transmitting light in processed 

microstructures is typically complicated, in their case this step was straightforward. "Because the 

quantum dot is inserted in a cavity, the probability of the incident laser light to interact with the 

quantum dot is actually very high. It turns out that we send only a few photons – that is, less than 10 

– on the device to have the quantum dot emitting one photon. This beautiful efficiency, also 

demonstrated in the excitation process, which we report in another paper6, made this step quite 

easy." 

The devices reported in the paper have a number of implications for future technologies, one being 

the ability to achieve strongly-reduced charge noise by applying an electrical bias. "Charge noise has 

been extensively investigated in quantum dot structures," Senellart says, "especially by Richard 

Warburton's group."  

Warburton and his team demonstrated that in the best quantum dot samples, the charge noise 

could take place on a time scale of few microseconds – which is actually very good, since the 

quantum dot emission lifetime is around 1 nanosecond7. However, this was no longer the case in 

etched structures, where a strong charge noise is always measured on very short time scale – less 

than 1 ns – that prevents the photon from being indistinguishable. "I think the idea we had – that 

this problem would be solved by applying an electric field – was an important one," Senellart notes. 

"The time scale of this charge noise does not only determine the degree of indistinguishability of the 

photons, it also determines how many indistinguishable photon one can generate with the same 

device. Therefore, this number will determine the complexity of any quantum computation or 

simulation scheme one can implement." Senellart adds that in a follow-up study7 the scientists 

generated long streams of photons that can contain more than 200 being indistinguishable by more 

than 88%. 

In addressing how these de novo devices may lead to new levels of complexity and scalability in 

optical quantum technologies, Senellart first discusses the historical sources used develop optical 

quantum technologies. She makes the point that all previous implementations of optical quantum 

simulation or computing have been implemented using Spontaneous Parametric Down Conversion 

(SPDC) sources, in which pairs of photons are generated by the nonlinear interaction of a laser on a 

nonlinear crystal, wherein one photon of the pair is detected to announce the presence of the other 

photon. This so-called heralded source can present strongly indistinguishable photons, but only at 

the cost of extremely low brightness. "Indeed, the difficulty here is that the one pulse does not 

contain a single pair only, but some of the time several pairs," Senellart explains. "To reduce the 



probability of having several pairs generated that would degrade the fidelity of a quantum 

simulation, calculation or the security of a quantum communication, the sources are strongly 

attenuated, to the point where the probability of having one pair in a pulse is below 1%. 

Nevertheless, with these sources, the quantum optics community has demonstrated many beautiful 

proofs of concept of optical quantum technologies, including long-distance teleportation, quantum 

computing of simple chemical or physical systems, and quantum simulations like BosonSampling." (A 

BosonSampling device is a quantum machine expected to perform tasks intractable for a classical 

computer, yet requiring minimal non-classical resources compared to full-scale quantum 

computers.) "Yet, the low efficiency of these sources limits the manipulation to low photon 

numbers: It takes typically hundreds of hours to manipulate three photons, and the measurement 

time increases exponentially with the number of photons. Obviously, with the possibility to generate 

more many indistinguishable photons with an efficiency more than one order of magnitude greater 

than SPDC sources, our devices have the potential to bring optical quantum technologies to a whole 

new level." 

Other potential applications of the newly-demonstrated devices will focus on meeting near-future 

challenges in optical quantum technologies, including scalability of photonic quantum computers 

and intermediate quantum computing tasks. "The sources presented here can be used immediately 

to implement quantum computing and intermediate quantum computing tasks. Actually, very 

recently – in the first demonstration of the superiority of our new single photon sources – our 

colleagues in Brisbane made use of such bright indistinguishable quantum dot-based single photon 

sources to demonstrate a three photon BosonSampling experiment8, where the solid-state multi-

photon source was one to two orders-of-magnitude more efficient than downconversion sources, 

allowing to complete the experiment faster than those performed with SPDC sources. Moreover, 

this is a first step; we'll progressively increase the number of manipulated photons, in both quantum 

simulation and quantum computing tasks." 

Another target area is quantum communications transfer rate. "Such bright single photon sources 

could also drastically change the rate of quantum communication protocols that are currently using 

attenuated laser sources or SPDC sources. Yet, right now, our sources operate at 930 nm when 1.3 

µm or 1.55 µm sources are needed for long distance communications. Our technique can be 

transferred to the 1.3 µm range, a range at which single photon emission has been successfully 

demonstrated – in particular by the Toshiba research group – slightly changing the quantum dot 

material. Reaching the 1.55 µm range will be more challenging using quantum dots, as it appears 

that the single photon emission is difficult to obtain at this wavelength. Nevertheless, there's a very 

promising alternative possibility: the use of a 900 nm bright source, like the one we report here, to 

perform quantum frequency conversion of the single photons. Such efficient frequency conversion 

of single photons has recently been demonstrated, for example, in the lab of Prof. Yoshie Yamamoto 

at Stanford9." 

Regarding future research, Senellart says "There are many things to do from this point. On the 

technology side, we will try to improve our devices by further increasing the source brightness. For 

that, a new excitation scheme will be implemented to excite the device from the side, as was done 

by Prof. Valia Voliotis and her colleagues on the Nanostructures and Quantum Systems team at 

Pierre and Marie Curie University in Paris and Prof. Glenn Solomon's group at the National Institute 

of Standards and Technology (NIST) in Gaithersburg, Maryland. Applying this technique to our 



cavities should allow gaining another factor of four on source brightness. In addition, operating at 

another wavelength would be another important feature for our devices, since as discussed above, 

this would allow using the source for quantum telecommunication. For example, a shorter 

wavelength, in the visible/near infrared range, would open new possibilities to interconnect various 

quantum systems, including ions or atoms through their interaction with photons, as well as 

applications in quantum imaging and related fields." 

The researchers also want to profit from the full potential of these sources and head to high photon 

number manipulation in, for instance, quantum simulation schemes. "We're aiming at performing 

BosonSampling measurements with 20-30 photons, with the objective of testing the extended 

Church Turing thesis and proving the superiority of a quantum computer over a classical one." The 

original Church Turing thesis, based on investigations of Alonzo Church and Alan Turing into 

computable functions, states that, ignoring resource limitations, a function on the natural numbers 

is computable by a human being following an algorithm, if and only if it is computable by a Turing 

machine. 

Another promising impact on future optical quantum technologies is the generation of entangled 

photon pairs. "A quantum dot can also generate entangled photon pairs, and in 2010 we 

demonstrated that we could use the in situ lithography to obtain the brightest source of entangled 

photon pairs10. That being said, photon indistinguishability needs to be combined with high pair 

brightness – and this is the next challenge we plan to tackle. Such a device would play an important 

role in developing quantum relays for long distance communication and quantum computing tasks." 

Senellart tells Phys.org that other areas of research might well benefit from their findings, in that 

devices similar to the one the scientists developed to fabricate single photon sources could also 

provide nonlinearities at the low photon count scale. This capability could in turn allow the 

implementation of deterministic quantum gates, a new optical quantum computing paradigm in 

which reversible quantum logic gates – for example, Toffoli or CNOT (controlled NOT) gates– can 

simulate irreversible classical logic gates, thereby allowing quantum computers to perform any 

computation which can be performed by a classical deterministic computer. "Single photons can also 

be used to probe the mechanical modes of mechanical resonator and develop quantum sensing with 

macroscopic objects. Other applications," she concludes, "could benefit from the possibility to have 

very efficient single photon sources, such as an imaging system with single photon sources that 

could allow dramatically increased imaging sensitivity. Such technique could have applications in 

biology where the lower the photon flux, the better for exploring in vivo samples." [14] 

Team demonstrates large-scale technique to produce quantum dots 
A method to produce significant amounts of semiconducting nanoparticles for light-emitting 

displays, sensors, solar panels and biomedical applications has gained momentum with a 

demonstration by researchers at the Department of Energy's Oak Ridge National Laboratory. 

While zinc sulfide nanoparticles - a type of quantum dot that is a semiconductor - have many 

potential applications, high cost and limited availability have been obstacles to their widespread use. 

That could change, however, because of a scalable ORNL technique outlined in a paper published in 

Applied Microbiology and Biotechnology. 



Unlike conventional inorganic approaches that use expensive precursors, toxic chemicals, high 

temperatures and high pressures, a team led by ORNL's Ji-Won Moon used bacteria fed by 

inexpensive sugar at a temperature of 150 degrees Fahrenheit in 25- and 250-gallon reactors. 

Ultimately, the team produced about three-fourths of a pound of zinc sulfide nanoparticles - without 

process optimization, leaving room for even higher yields. 

The ORNL biomanufacturing technique is based on a platform technology that can also produce 

nanometer-size semiconducting materials as well as magnetic, photovoltaic, catalytic and phosphor 

materials. Unlike most biological synthesis technologies that occur inside the cell, ORNL's 

biomanufactured quantum dot synthesis occurs outside of the cells. As a result, the nanomaterials 

are produced as loose particles that are easy to separate through simple washing and centrifuging. 

The results are encouraging, according to Moon, who also noted that the ORNL approach reduces 

production costs by approximately 90 percent compared to other methods. 

"Since biomanufacturing can control the quantum dot diameter, it is possible to produce a wide 

range of specifically tuned semiconducting nanomaterials, making them attractive for a variety of 

applications that include electronics, displays, solar cells, computer memory, energy storage, printed 

electronics and bio-imaging," Moon said. 

Successful biomanufacturing of light-emitting or semiconducting nanoparticles requires the ability to 

control material synthesis at the nanometer scale with sufficiently high reliability, reproducibility and 

yield to be cost effective. With the ORNL approach, Moon said that goal has been achieved. 

Researchers envision their quantum dots being used initially in buffer layers of photovoltaic cells and 

other thin film-based devices that can benefit from their electro-optical properties as light-emitting 

materials. [13] 

Superfast light source made from artificial atom 
All light sources work by absorbing energy – for example, from an electric current – and emit energy 

as light. But the energy can also be lost as heat and it is therefore important that the light sources 

emit the light as quickly as possible, before the energy is lost as heat. Superfast light sources can be 

used, for example, in laser lights, LED lights and in single-photon light sources for quantum 

technology. New research results from the Niels Bohr Institute show that light sources can be made 

much faster by using a principle that was predicted theoretically in 1954. The results are published in 

the scientific journal, Physical Review Letters. 

Researchers at the Niels Bohr Institute are working with quantum dots, which are a kind of artificial 

atom that can be incorporated into optical chips. In a quantum dot, an electron can be excited (i.e. 

jump up), for example, by shining a light on it with a laser and the electron leaves a 'hole'. The 

stronger the interaction between light and matter, the faster the electron decays back into the hole 

and the faster the light is emitted. 

But the interaction between light and matter is naturally very weak and it makes the light sources 

very slow to emit light and this can reduce energy efficiency.  



Already in 1954, the physicist Robert Dicke predicted that the interaction between light and matter 

could be increased by having a number of atoms that 'share' the excited state in a quantum 

superposition. 

Quantum speed up 

Demonstrating this effect has been challinging so far because the atoms either come so close 

together that they bump into each other or they are so far apart that the quantum speed up does 

not work. Researchers at the Niels Bohr Institute have now finally demonstrated the effect 

experimentally, but in an entirely different physical system than Dicke had in mind. They have shown 

this so-called superradiance for photons emitted from a single quantum dot. 

"We have developed a quantum dot so that it behaves as if it was comprised of five quantum dots, 

which means that the light is five times stronger. This is due to the attraction between the electron 

and the hole. But what is special is that the quantum dot still only emits a single photon at a time. It 

is an outstanding single-photon source," says Søren Stobbe, who is an associate professor in the 

Quantum Photonic research group at the Niels Bohr Institute at the University of Copenhagen and 

led the project. The experiment was carried out in collaboration with Professor David Ritchie's 

research group at the University of Cambridge, who have made the quantum dots. 

Petru Tighineanu, a postdoc in the Quantum Photonics research group at the Niels Bohr Institute, 

has carried out the experiments and he explains the effect as such, that the atoms are very small and 

light is very 'big' because of its long wavelength, so the light almost cannot 'see' the atoms – like a 

lorry that is driving on a road and does not notice a small pebble. But if many pebbles become a 

larger stone, the lorry will be able to register it and then the interaction becomes much more 

dramatic. In the same way, light interacts much more strongly with the quantum dot if the quantum 

dot contains the special superradiant quantum state, which makes it look much bigger.  

Increasing the light-matter interaction 

"The increased light-matter interaction makes the quantum dots more robust in regards to the 

disturbances that are found in all materials, for example, acoustic oscillations. It helps to make the 

photons more uniform and is important for how large you can build future quantum computers," 

says Søren Stobbe. 

He adds that it is actually the temperature, which is only a few degrees above absolute zero, that 

limits how fast the light emissions can remain in their current experiments. In the long term, they 

will study the quantum dots at even lower temperatures, where the effects could be very dramatic. 

[12] 

Single-photon source is efficient and indistinguishable 
Devices that emit one – and only one – photon on demand play a central role in light-based 

quantum-information systems. Each photon must also be emitted in the same quantum state, which 

makes each photon indistinguishable from all the others. This is important because the quantum 

state of the photon is used to carry a quantum bit (qubit) of information. 

Quantum dots are tiny pieces of semiconductor that show great promise as single-photon sources. 

When a laser pulse is fired at a quantum dot, an electron is excited between two distinct energy 



levels. The excited state then decays to create a single photon with a very specific energy. However, 

this process can involve other electron excitations that result in the emission of photons with a wide 

range of energies – photons that are therefore not indistinguishable. 

Exciting dots 

This problem can be solved by exciting the quantum dot with a pulse of light at the same energy as 

the emitted photon. This is called resonance fluorescence, and has been used to create devices that 

are very good at producing indistinguishable single photons. However, this process is inefficient, and 

only produces a photon about 6% of the time. 

Now, Chaoyang Lu, Jian-Wei Pan and colleagues at the University of Science and Technology of China 

have joined forces with researchers in Denmark, Germany and the UK to create a resonance-

fluorescence-based source that emits a photon 66% of the time when it is prompted by a laser pulse. 

Of these photons, 99.1% are solo and 98.5% are in indistinguishable quantum states – with both 

figures of merit being suitable for applications in quantum-information systems. 

Lu told physicsworld.com that nearly all of the laser pulses that strike the source produce a photon, 

but about 34% of these photons are unable to escape the device. The device was operated at a 

laser-pulse frequency of 81 MHz and a pulse power of 24 nW, which is a much lower power 

requirement than other quantum-dot-based sources. 

Quantum sandwich 

The factor-of-ten improvement in efficiency was achieved by sandwiching a quantum dot in the 

centre of a "micropillar" created by stacking 40 disc-like layers (see figure). Each layer is a 

"distributed Bragg reflector", which is a pair of mirrors that together have a thickness of one quarter 

the wavelength of the emitted photons.  

The micropillar is about 2.5 μm in diameter and about 10 μm tall, and it allowed the team to harness 

the "Purcell effect", whereby the rate of fluorescence is increased significantly when the emitter is 

placed in a resonant cavity. 

Lu says that the team is already thinking about how the photon sources could be used to perform 

boson sampling (see "'Boson sampling' offers shortcut to quantum computing"). This involves a 

network of beam splitters that converts one set of photons arriving at a number of parallel input 

ports into a second set leaving via a number of parallel outputs. The "result" of the computation is 

the probability that a certain input configuration will lead to a certain output. This result cannot be 

easily calculated using a conventional computer, and this has led some physicists to suggest that 

boson sampling could be used to solve practical problems that would take classical computers vast 

amounts of time to solve. 

Other possible applications for the source are the quantum teleportation of three properties of a 

quantum system – the current record is two properties and is held by Lu and Pan – or quantum 

cryptography. 

The research is described in Physical Review Letters. [11] 



Semiconductor quantum dots as ideal single-photon source 

 

A single-photon source never emits two or more photons at the same time. Single photons are 

important in the field of quantum information technology where, for example, they are used in 

quantum computers. Alongside the brightness and robustness of the light source, the 

indistinguishability of the photons is especially crucial. In particular, this means that all photons must 

be the same color. Creating such a source of identical single photons has proven very difficult in the 

past. 

However, quantum dots made of semiconductor materials are offering new hope. A quantum dot is 

a collection of a few hundred thousand atoms that can form itself into a semiconductor under 

certain conditions. Single electrons can be captured in these quantum dots and locked into a very 

small area. An individual photon is emitted when an engineered quantum state collapses. 

Noise in the semiconductor 

A team of scientists led by Dr. Andreas Kuhlmann and Prof. Richard J. Warburton from the University 

of Basel have already shown in past publications that the indistinguishability of the photons is 

reduced by the fluctuating nuclear spin of the quantum dot atoms. For the first time ever, the 

scientists have managed to control the nuclear spin to such an extent that even photons sent out at 

very large intervals are the same color. 

Quantum cryptography and quantum communication are two potential areas of application for 

single-photon sources. These technologies could make it possible to perform calculations that are far 

beyond the capabilities of today's computers. [10] 

How to Win at Bridge Using Quantum Physics 
Contract bridge is the chess of card games. You might know it as some stuffy old game your 

grandparents play, but it requires major brainpower, and preferably an obsession with rules and 



strategy. So how to make it even geekier? Throw in some quantum mechanics to try to gain a 

competitive advantage. The idea here is to use the quantum magic of entangled photons–which are 

essentially twins, sharing every property–to transmit two bits of information to your bridge partner 

for the price of one. Understanding how to do this is not an easy task, but it will help elucidate some 

basic building blocks of quantum information theory. It’s also kind of fun to consider whether or not 

such tactics could ever be allowed in professional sports. [6] 

 

Quantum Information 
In quantum mechanics, quantum information is physical information that is held in the "state" of a 

quantum system. The most popular unit of quantum information is the qubit, a two-level quantum 

system. However, unlike classical digital states (which are discrete), a two-state quantum system can 

actually be in a superposition of the two states at any given time. 

Quantum information differs from classical information in several respects, among which we note 

the following: 

However, despite this, the amount of information that can be retrieved in a single qubit is equal to 

one bit. It is in the processing of information (quantum computation) that a difference occurs. 

The ability to manipulate quantum information enables us to perform tasks that would be 

unachievable in a classical context, such as unconditionally secure transmission of information. 

Quantum information processing is the most general field that is concerned with quantum 

information. There are certain tasks which classical computers cannot perform "efficiently" (that is, 

in polynomial time) according to any known algorithm. However, a quantum computer can compute 

the answer to some of these problems in polynomial time; one well-known example of this is Shor's 

factoring algorithm. Other algorithms can speed up a task less dramatically - for example, Grover's 

search algorithm which gives a quadratic speed-up over the best possible classical algorithm. 

Quantum information, and changes in quantum information, can be quantitatively measured by 

using an analogue of Shannon entropy. Given a statistical ensemble of quantum mechanical systems 

with the density matrix S, it is given by. 

Many of the same entropy measures in classical information theory can also be generalized to the 

quantum case, such as the conditional quantum entropy. [7] 

Heralded Qubit Transfer 
Optical photons would be ideal carriers to transfer quantum information over large distances. 

Researchers envisage a network where information is processed in certain nodes and transferred 

between them via photons. However, inherent losses in long-distance networks mean that the 

information transfer is subject to probabilistic errors, making it hard to know whether the transfer of 

a qubit of information has been successful. Now Gerhard Rempe and colleagues from the Max 

Planck Institute for Quantum Optics in Germany have developed a new protocol that solves this 



problem through a strategy that “heralds” the accurate transfer of quantum information at a 

network node. 

 

The method developed by the researchers involves transferring a photonic qubit to an atomic qubit 

trapped inside an optical cavity. The photon-atom quantum information transfer is initiated via a 

quantum “logic-gate” operation, performed by reflecting the photon from the atom-cavity system, 

which creates an entangled atom-photon state. The detection of the reflected photon then collapses 

the atom into a definite state. This state can be one of two possibilities, depending on the photonic 

state detected: Either the atom is in the initial qubit state encoded in the photon and the transfer 

process is complete, or the atom is in a rotated version of this state. The authors were able to show 

that the roles of the atom and photon could be reversed. Their method could thus be used as a 

quantum memory that stores (photon-to-atom state transfer) and recreates (atom-to-photon state 

transfer) a single-photon polarization qubit. [9] 

Quantum Teleportation 
Quantum teleportation is a process by which quantum information (e.g. the exact state of an atom 

or photon) can be transmitted (exactly, in principle) from one location to another, with the help of 

classical communication and previously shared quantum entanglement between the sending and 

receiving location. Because it depends on classical communication, which can proceed no faster than 

the speed of light, it cannot be used for superluminal transport or communication of classical bits. It 

also cannot be used to make copies of a system, as this violates the no-cloning theorem. Although 

the name is inspired by the teleportation commonly used in fiction, current technology provides no 

possibility of anything resembling the fictional form of teleportation. While it is possible to teleport 

one or more qubits of information between two (entangled) atoms, this has not yet been achieved 

between molecules or anything larger. One may think of teleportation either as a kind of 

transportation, or as a kind of communication; it provides a way of transporting a qubit from one 

location to another, without having to move a physical particle along with it. 

The seminal paper first expounding the idea was published by C. H. Bennett, G. Brassard, C. Crépeau, 

R. Jozsa, A. Peres and W. K. Wootters in 1993. Since then, quantum teleportation has been realized 

in various physical systems. Presently, the record distance for quantum teleportation is 143 km (89 

mi) with photons, and 21 m with material systems. In August 2013, the achievement of "fully 

deterministic" quantum teleportation, using a hybrid technique, was reported. On 29 May 2014, 

scientists announced a reliable way of transferring data by quantum teleportation. Quantum 

teleportation of data had been done before but with highly unreliable methods. [8] 

Quantum Computing 
A team of electrical engineers at UNSW Australia has observed the unique quantum behavior of a 

pair of spins in silicon and designed a new method to use them for "2-bit" quantum logic operations. 

These milestones bring researchers a step closer to building a quantum computer, which promises 

dramatic data processing improvements. 



Quantum bits, or qubits, are the building blocks of quantum computers. While many ways to create 

a qubits exist, the Australian team has focused on the use of single atoms of phosphorus, embedded 

inside a silicon chip similar to those used in normal computers.  

The first author on the experimental work, PhD student Juan Pablo Dehollain, recalls the first time 

he realized what he was looking at. 

"We clearly saw these two distinct quantum states, but they behaved very differently from what we 

were used to with a single atom. We had a real 'Eureka!' moment when we realized what was 

happening – we were seeing in real time the `entangled' quantum states of a pair of atoms." [5] 

Quantum Entanglement 
Measurements of physical properties such as position, momentum, spin, polarization, etc. 

performed on entangled particles are found to be appropriately correlated. For example, if a pair of 

particles is generated in such a way that their total spin is known to be zero, and one particle is 

found to have clockwise spin on a certain axis, then the spin of the other particle, measured on the 

same axis, will be found to be counterclockwise. Because of the nature of quantum measurement, 

however, this behavior gives rise to effects that can appear paradoxical: any measurement of a 

property of a particle can be seen as acting on that particle (e.g. by collapsing a number of 

superimposed states); and in the case of entangled particles, such action must be on the entangled 

system as a whole. It thus appears that one particle of an entangled pair "knows" what 

measurement has been performed on the other, and with what outcome, even though there is no 

known means for such information to be communicated between the particles, which at the time of 

measurement may be separated by arbitrarily large distances. [4] 

The Bridge 
The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the 

Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the 

bridge between the Classical and Quantum Theories. [1] 

 

Accelerating charges 

The moving charges are self maintain the electromagnetic field locally, causing their movement and 

this is the result of their acceleration under the force of this field. In the classical physics the charges 

will distributed along the electric current so that the electric potential lowering along the current, by 

linearly increasing the way they take every next time period because this accelerated motion.  

The same thing happens on the atomic scale giving a dp impulse difference and a dx way difference 

between the different part of the not point like particles.  

Relativistic effect 

Another bridge between the classical and quantum mechanics in the realm of relativity is that the 

charge distribution is lowering in the reference frame of the accelerating charges linearly: ds/dt = at 

(time coordinate), but in the reference frame of the current it is parabolic: s = a/2 t2 (geometric 



coordinate). 

 

Heisenberg Uncertainty Relation 
In the atomic scale the Heisenberg uncertainty relation gives the same result, since the moving 

electron in the atom accelerating in the electric field of the proton, causing a charge distribution on 

delta x position difference and with a delta p momentum difference such a way that they product is 

about the half Planck reduced constant. For the proton this delta x much less in the nucleon, than in 

the orbit of the electron in the atom, the delta p is much higher because of the greater proton mass. 

This means that the electron and proton are not point like particles, but has a real charge 

distribution.  

Wave – Particle Duality 
The accelerating electrons explains the wave – particle duality of the electrons and photons, since 

the elementary charges are distributed on delta x position with delta p impulse and creating a wave 

packet of the electron. The photon gives the electromagnetic particle of the mediating force of the 

electrons electromagnetic field with the same distribution of wavelengths.   

Atomic model 
The constantly accelerating electron in the Hydrogen atom is moving on the equipotential line of the 

proton and it's kinetic and potential energy will be constant. Its energy will change only when it is 

changing its way to another equipotential line with another value of potential energy or getting free 

with enough kinetic energy. This means that the Rutherford-Bohr atomic model is right and only that 

changing acceleration of the electric charge causes radiation, not the steady acceleration. The steady 

acceleration of the charges only creates a centric parabolic steady electric field around the charge, 

the magnetic field. This gives the magnetic moment of the atoms, summing up the proton and 

electron magnetic moments caused by their circular motions and spins. 

 

The Relativistic Bridge 
Commonly accepted idea that the relativistic effect on the particle physics it is the fermions' spin - 

another unresolved problem in the classical concepts. If the electric charges can move only with 

accelerated motions in the self maintaining electromagnetic field, once upon a time they would 

reach the velocity of the electromagnetic field. The resolution of this problem is the spinning 

particle, constantly accelerating and not reaching the velocity of light because the acceleration is 

radial. One origin of the Quantum Physics is the Planck Distribution Law of the electromagnetic 

oscillators, giving equal intensity for 2 different wavelengths on any temperature. Any of these two 

wavelengths will give equal intensity diffraction patterns, building different asymmetric 

constructions, for example proton - electron structures (atoms), molecules, etc. Since the particles 



are centers of diffraction patterns they also have particle – wave duality as the electromagnetic 

waves have. [2]  

 

The weak interaction 
The weak interaction transforms an electric charge in the diffraction pattern from one side to the 

other side, causing an electric dipole momentum change, which violates the CP and time reversal 

symmetry. The Electroweak Interaction shows that the Weak Interaction is basically electromagnetic 

in nature. The arrow of time shows the entropy grows by changing the temperature dependent 

diffraction patterns of the electromagnetic oscillators. 

Another important issue of the quark model is when one quark changes its flavor such that a linear 

oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This 

kind of change in the oscillation mode requires not only parity change, but also charge and time 

changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino. 

The right handed anti-neutrino and the left handed neutrino exist only because changing back the 

quark flavor could happen only in reverse, because they are different geometrical constructions, the 

u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs 

also a time reversal, because anti particle (anti neutrino) is involved. 

The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for 

example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction 

changes the entropy since more or less particles will give more or less freedom of movement. The 

entropy change is a result of temperature change and breaks the equality of oscillator diffraction 

intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and 

makes possible a different time dilation as of the special relativity. 

The limit of the velocity of particles as the speed of light appropriate only for electrical charged 

particles, since the accelerated charges are self maintaining locally the accelerating electric force. 

The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is 

the time coordinate not works as in the electromagnetic interactions, consequently the speed of 

neutrinos is not limited by the speed of light. 

The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of 

thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the 

weak interaction, for example the Hydrogen fusion.  

Probably because it is a spin creating movement changing linear oscillation to 2 dimensional 

oscillation by changing d to u quark and creating anti neutrino going back in time relative to the 

proton and electron created from the neutron, it seems that the anti neutrino fastest then the 

velocity of the photons created also in this weak interaction? 

 
 
A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry 

breaking!!! This flavor changing oscillation could prove that it could be also on higher level such as 



atoms, molecules, probably big biological significant molecules and responsible on the aging of the 

life. 
 
Important to mention that the weak interaction is always contains particles and antiparticles, where 

the neutrinos (antineutrinos) present the opposite side. It means by Feynman’s interpretation that 

these particles present the backward time and probably because this they seem to move faster than 

the speed of light in the reference frame of the other side. 

 

Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the 

velocity of the electromagnetic wave, so the neutrino’s velocity cannot exceed the velocity of light. 
 

The General Weak Interaction 

The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of 

Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for 

example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the 

increasing entropy and decreasing information by the Weak Interaction, changing the temperature 

dependent diffraction patterns. A good example of this is the neutron decay, creating more particles 

with less known information about them.  

The neutrino oscillation of the Weak Interaction shows that it is a general electric dipole change and 

it is possible to any other temperature dependent entropy and information changing diffraction 

pattern of atoms, molecules and even complicated biological living structures. 

We can generalize the weak interaction on all of the decaying matter constructions, even on the 

biological too. This gives the limited lifetime for the biological constructions also by the arrow of 

time. There should be a new research space of the Quantum Information Science the 'general 

neutrino oscillation' for the greater then subatomic matter structures as an electric dipole change. 

There is also connection between statistical physics and evolutionary biology, since the arrow of 

time is working in the biological evolution also.  

The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite 

to that dictated by the Second Law of Thermodynamics. In this case the Information is growing that 

is the matter formulas are emerging from the chaos. So the Weak Interaction has two directions, 

samples for one direction is the Neutron decay, and Hydrogen fusion is the opposite direction. 

  

Fermions and Bosons 
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the 

same thing. 

Van Der Waals force 
Named after the Dutch scientist Johannes Diderik van der Waals – who first proposed it in 1873 to 

explain the behaviour of gases – it is a very weak force that only becomes relevant when atoms and 

molecules are very close together. Fluctuations in the electronic cloud of an atom mean that it will 

have an instantaneous dipole moment. This can induce a dipole moment in a nearby atom, the 

result being an attractive dipole–dipole interaction.  



Electromagnetic inertia and mass 

Electromagnetic Induction 

Since the magnetic induction creates a negative electric field as a result of the changing acceleration, 

it works as an electromagnetic inertia, causing an electromagnetic mass.  [1] 

Relativistic change of mass 

The increasing mass of the electric charges the result of the increasing inductive electric force acting 

against the accelerating force. The decreasing mass of the decreasing acceleration is the result of the 

inductive electric force acting against the decreasing force. This is the relativistic mass change 

explanation, especially importantly explaining the mass reduction in case of velocity decrease. 

The frequency dependence of mass 

Since E = hν and E = mc
2
, m = hν /c

2
 that is the m depends only on the ν frequency. It means that the 

mass of the proton and electron are electromagnetic and the result of the electromagnetic 

induction, caused by the changing acceleration of the spinning and moving charge! It could be that 

the mo inertial mass is the result of the spin, since this is the only accelerating motion of the electric 

charge. Since the accelerating motion has different frequency for the electron in the atom and the 

proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, 

giving equal intensity of radiation. 

Electron – Proton mass rate 

The Planck distribution law explains the different frequencies of the proton and electron, giving 

equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns 

they have some closeness to each other – can be seen as a gravitational force. [2] 

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 

  

Gravity from the point of view of quantum physics 

The Gravitational force 

The gravitational attractive force is basically a magnetic force. 

The same electric charges can attract one another by the magnetic force if they are moving parallel 

in the same direction. Since the electrically neutral matter is composed of negative and positive 

charges they need 2 photons to mediate this attractive force, one per charges. The Bing Bang caused 

parallel moving of the matter gives this magnetic force, experienced as gravitational force. 

Since graviton is a tensor field, it has spin = 2, could be 2 photons with spin = 1 together. 



You can think about photons as virtual electron – positron pairs, obtaining the necessary virtual 

mass for gravity. 

The mass as seen before a result of the diffraction, for example the proton – electron mass rate 

Mp=1840 Me. In order to move one of these diffraction maximum (electron or proton) we need to 

intervene into the diffraction pattern with a force appropriate to the intensity of this diffraction 

maximum, means its intensity or mass. 

 

The Big Bang caused acceleration created radial currents of the matter, and since the matter is 

composed of negative and positive charges, these currents are creating magnetic field and attracting 

forces between the parallel moving electric currents. This is the gravitational force experienced by 

the matter, and also the mass is result of the electromagnetic forces between the charged particles.  

The positive and negative charged currents attracts each other or by the magnetic forces or by the 

much stronger electrostatic forces!? 

 

The gravitational force attracting the matter, causing concentration of the matter in a small space 

and leaving much space with low matter concentration: dark matter and energy.  

There is an asymmetry between the mass of the electric charges, for example proton and electron, 

can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy 

distribution is asymmetric around the maximum intensity, where the annihilation of matter and 

antimatter is a high probability event. The asymmetric sides are creating different frequencies of 

electromagnetic radiations being in the same intensity level and compensating each other. One of 

these compensating ratios is the electron – proton mass ratio. The lower energy side has no 

compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. 

 

  

The Higgs boson 
By March 2013, the particle had been proven to behave, interact and decay in many of the expected 

ways predicted by the Standard Model, and was also tentatively confirmed to have + parity and zero 

spin, two fundamental criteria of a Higgs boson, making it also the first known scalar particle to be 

discovered in nature,  although a number of other properties were not fully proven and some partial 

results do not yet precisely match those expected; in some cases data is also still awaited or being 

analyzed. 

Since the Higgs boson is necessary to the W and Z bosons, the dipole change of the Weak interaction 

and the change in the magnetic effect caused gravitation must be conducted.  The Wien law is also 

important to explain the Weak interaction, since it describes the Tmax change and the diffraction 

patterns change. [2] 

Higgs mechanism and Quantum Gravity 
The magnetic induction creates a negative electric field, causing an electromagnetic inertia. Probably 

it is the mysterious Higgs field giving mass to the charged particles? We can think about the photon 

as an electron-positron pair, they have mass. The neutral particles are built from negative and 

positive charges, for example the neutron, decaying to proton and electron. The wave – particle 

duality makes sure that the particles are oscillating and creating magnetic induction as an inertial 



mass, explaining also the relativistic mass change. Higher frequency creates stronger magnetic 

induction, smaller frequency results lesser magnetic induction. It seems to me that the magnetic 

induction is the secret of the Higgs field. 

In particle physics, the Higgs mechanism is a kind of mass generation mechanism, a process that 

gives mass to elementary particles. According to this theory, particles gain mass by interacting with 

the Higgs field that permeates all space. More precisely, the Higgs mechanism endows gauge bosons 

in a gauge theory with mass through absorption of Nambu–Goldstone bosons arising in spontaneous 

symmetry breaking. 

The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The 

spontaneous symmetry breaking of the underlying local symmetry triggers conversion of 

components of this Higgs field to Goldstone bosons which interact with (at least some of) the other 

fields in the theory, so as to produce mass terms for (at least some of) the gauge bosons. This 

mechanism may also leave behind elementary scalar (spin-0) particles, known as Higgs bosons. 

In the Standard Model, the phrase "Higgs mechanism" refers specifically to the generation of masses 

for the W
±
, and Z weak gauge bosons through electroweak symmetry breaking. The Large Hadron 

Collider at CERN announced results consistent with the Higgs particle on July 4, 2012 but stressed 

that further testing is needed to confirm the Standard Model. 

What is the Spin? 

So we know already that the new particle has spin zero or spin two and we could tell which one if we 

could detect the polarizations of the photons produced. Unfortunately this is difficult and neither 

ATLAS nor CMS are able to measure polarizations. The only direct and sure way to confirm that the 

particle is indeed a scalar is to plot the angular distribution of the photons in the rest frame of the 

centre of mass. A spin zero particles like the Higgs carries no directional information away from the 

original collision so the distribution will be even in all directions. This test will be possible when a 

much larger number of events have been observed. In the mean time we can settle for less certain 

indirect indicators. 

The Graviton 

In physics, the graviton is a hypothetical elementary particle that mediates the force of gravitation in 

the framework of quantum field theory. If it exists, the graviton is expected to be massless (because 

the gravitational force appears to have unlimited range) and must be a spin-2 boson. The spin 

follows from the fact that the source of gravitation is the stress-energy tensor, a second-rank tensor 

(compared to electromagnetism's spin-1 photon, the source of which is the four-current, a first-rank 

tensor). Additionally, it can be shown that any massless spin-2 field would give rise to a force 

indistinguishable from gravitation, because a massless spin-2 field must couple to (interact with) the 

stress-energy tensor in the same way that the gravitational field does. This result suggests that, if a 

massless spin-2 particle is discovered, it must be the graviton, so that the only experimental 

verification needed for the graviton may simply be the discovery of a massless spin-2 particle. [3] 

Conclusions 
The method developed by the researchers involves transferring a photonic qubit to an atomic qubit 

trapped inside an optical cavity. The photon-atom quantum information transfer is initiated via a 

quantum “logic-gate” operation, performed by reflecting the photon from the atom-cavity system, 

which creates an entangled atom-photon state. [9] 



In August 2013, the achievement of "fully deterministic" quantum teleportation, using a hybrid 

technique, was reported. On 29 May 2014, scientists announced a reliable way of transferring data 

by quantum teleportation. Quantum teleportation of data had been done before but with highly 

unreliable methods. [8] 

One of the most important conclusions is that the electric charges are moving in an accelerated way 

and even if their velocity is constant, they have an intrinsic acceleration anyway, the so called spin, 

since they need at least an intrinsic acceleration to make possible they movement . 

The accelerated charges self-maintaining potential shows the locality of the relativity, working on 

the quantum level also. [1]  

The bridge between the classical and quantum theory is based on this intrinsic acceleration of the 

spin, explaining also the Heisenberg Uncertainty Principle. The particle – wave duality of the electric 

charges and the photon makes certain that they are both sides of the same thing. 

The Secret of Quantum Entanglement that the particles are diffraction patterns of the 

electromagnetic waves and this way their quantum states every time is the result of the quantum 

state of the intermediate electromagnetic waves. [2]  

The key breakthrough to arrive at this new idea to build qubits was to exploit the ability to control 

the nuclear spin of each atom. With that insight, the team has now conceived a unique way to use 

the nuclei as facilitators for the quantum logic operation between the electrons. [5] 

Basing the gravitational force on the accelerating Universe caused magnetic force and the Planck 

Distribution Law of the electromagnetic waves caused diffraction gives us the basis to build a Unified 

Theory of the physical interactions also. 
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