The Challenge of the Lepton Universality The finding that electrons and muons aren't produced equally in certain particle decays may hint at a crack in the standard model. The resolution of the Proton Radius Puzzle is the diffraction pattern, giving another wavelength in case of muonic hydrogen oscillation for the proton than it is in case of normal hydrogen because of the different mass rate. Taking into account the Planck Distribution Law of the electromagnetic oscillators, we can explain the electron/proton mass rate and the Weak and Strong Interactions. Lattice QCD gives the same results as the diffraction patterns of the electromagnetic oscillators, explaining the color confinement and the asymptotic freedom of the Strong Interactions. #### **Contents** | Preface | 2 | |--------------------------------------------------------------|----| | The Lepton Universality | 2 | | The Proton Radius Puzzle | 3 | | Asymmetry in the interference occurrences of oscillators | 4 | | Spontaneously broken symmetry in the Planck distribution law | 6 | | The structure of the proton | 7 | | The weak interaction | 8 | | The Strong Interaction - QCD | 9 | | Confinement and Asymptotic Freedom | 9 | | Lattice QCD | 9 | | QCD | 9 | | Color Confinement | 10 | | Electromagnetic inertia and mass | 10 | | Electromagnetic Induction | 10 | | The frequency dependence of mass | 10 | | Electron – Proton mass rate | 10 | | The potential of the diffraction pattern | 11 | | Experiments with explanation | 12 | |------------------------------|----| | Conclusions | 12 | | References | 12 | Author: George Rajna #### **Preface** What is the difference between an electron and a muon? The obvious answer is mass: the muon is about 200 times heavier than the electron. But as far as the standard model of particle physics is concerned, the electron and the muon, which are both leptons, behave the same. More specifically, the way they (and the third type of lepton, the tau particle) interact with other particles, either via the electromagnetic force or the weak force, is identical. The diffraction patterns of the electromagnetic oscillators give the explanation of the Electroweak and Electro-Strong interactions. [2] Lattice QCD gives the same results as the diffraction patterns which explain the color confinement and the asymptotic freedom. The hadronization is the diffraction pattern of the baryons giving the jet of the color – neutral particles! # **The Lepton Universality** Within the Standard Model of particle physics (the equations that describe and predict the behavior of all of the known particles and forces), the effects of the weak nuclear force on the three leptons — the electron, the muon and the tau — are all expected to be identical. This called "lepton universality". This expectation has been tested many times; for instance, the probability that a negatively charged W particle decays to an electron plus an electron anti-neutrino is the same as for it to decay to a muon plus a muon anti-neutrino, and the same for a tau plus a tau anti-neutrino, to very good precision. Fig. 1: Lepton universality predicts that the two processes shown — the decay of a B meson to a D meson, an anti-neutrino and a tau or electron, involving the weak nuclear force via a W `virtual particle' — should differ in probability only through the calculable effect of the tau lepton's mass, which makes the tau decay a bit less likely. The tau will rapidly decay, sometimes to an electron or muon, along with an undetectable neutrino and anti-neutrino. The D meson will also rapidly decay to other particles (not shown); these must all be experimentally detected in order to know a D meson was present. Only the bottom and charm quarks in the mesons are shown, but the mesons also contain an up and down anti-quark, along with many gluons and quark-antiquark pairs. [13] This idea, known as lepton universality, is being challenged by a new result from scientists running the LHCb experiment at the Large Hadron Collider. The researchers analyzed particles produced in the decay of B mesons, measuring the ratio of those decays that produced a K meson (kaon) and two muons to those that produced a K meson and two electrons. The observed value differs from unity by 2.6 standard deviations, less than the 5 standard deviations particle physicists require before claiming a discovery. Yet, if substantiated by further data, the finding would imply a striking breakdown of the standard model and clear evidence for a new kind of interaction that violates lepton universality—a surprising and view-changing discovery. [12] ## **The Proton Radius Puzzle** Officially, the radius of a proton is 0.88 ± 0.01 femtometers (fm, or 10^{-15} m). Researchers attained that value using two methods: first, by measuring the proton's energy levels using hydrogen spectroscopy, and second, by using electron scattering experiments, where an electron beam is shot at a proton and the way the electrons scatter is used to calculate the proton's size. But when trying to further improve the precision of the proton radius value in 2010 with a third experimental technique, physicists got a value of 0.842 ± 0.001 fm—a difference of 7 deviations from the official value. These experiments used muonic hydrogen, in which a negatively charged muon orbits around the proton, instead of atomic hydrogen, in which an electron orbits around the proton. Because a muon is 200 times heavier than an electron, a muon orbits closer to a proton than an electron does, and can determine the proton size more precisely. This inconsistency between proton radius values, called the "proton radius puzzle," has gained a lot of attention lately and has led to several proposed explanations. Some of these explanations include new degrees of freedom beyond the Standard Model, as well as extra dimensions. [9] Taking into account the Electro-Strong Interaction we have a simple explanation of this puzzle. In the muonic hydrogen the muon/proton mass rate different from the electron/proton mass rate of the normal hydrogen, giving exactly the measured difference for the proton's radius, using the diffraction pattern of the Electro-Strong Interaction. # Asymmetry in the interference occurrences of oscillators The asymmetrical configurations are stable objects of the real physical world, because they cannot annihilate. One of the most obvious asymmetry is the proton – electron mass rate M_p = 1840 M_e while they have equal charge. We explain this fact by the strong interaction of the proton, but how remember it his strong interaction ability for example in the H – atom where are only electromagnetic interactions among proton and electron. This gives us the idea to origin the mass of proton from the electromagnetic interactions by the way interference occurrences of oscillators. The uncertainty relation of Heisenberg makes sure that the particles are oscillating. The resultant intensity due to n equally spaced oscillators, all of equal amplitude but different from one another in phase, either because they are driven differently in phase or because we are looking at them an angle such that there is a difference in time delay: (1) $$I = I_0 \sin^2 n \phi/2 / \sin^2 \phi/2$$ If ϕ is infinitesimal so that $\sin \phi = \phi$, than (2) $$I = n^2 I_0$$ This gives us the idea of (3) $$M_p = n^2 M_e$$ Fig. 30–3. A linear array of n equal oscillators, driven with phases $\alpha_s = s\alpha$. Figure 1.) A linear array of n equal oscillators There is an important feature about formula (1) which is that if the angle ϕ is increased by the multiple of 2π , it makes no difference to the formula. So (4) $$d \sin \theta = m \lambda$$ and we get m-order beam if λ less than d. [6] If d less than λ we get only zero-order one centered at θ = 0. Of course, there is also a beam in the opposite direction. The right chooses of d and λ we can ensure the conservation of charge. For example $$(5) 2 (m+1) = n$$ Where $2(m+1) = N_p$ number of protons and $n = N_e$ number of electrons. In this way we can see the H_2 molecules so that 2n electrons of n radiate to 4(m+1) protons, because $d_e > \lambda_e$ for electrons, while the two protons of one H_2 molecule radiate to two electrons of them, because of $d_e < \lambda_e$ for this two protons. To support this idea we can turn to the Planck distribution law, that is equal with the Bose – Einstein statistics. # Spontaneously broken symmetry in the Planck distribution law The Planck distribution law is temperature dependent and it should be true locally and globally. I think that Einstein's energy-matter equivalence means some kind of existence of electromagnetic oscillations enabled by the temperature, creating the different matter formulas, atoms molecules, crystals, dark matter and energy. Max Planck found for the black body radiation As a function of wavelength ($$\lambda$$), Planck's law is written as: $$B_{\lambda}(T) = \frac{2 h c^2}{\lambda^5} \frac{1}{e^{\frac{hc}{\lambda E_B T}} - 1}.$$ Figure 2. The distribution law for different T temperatures We see there are two different λ_1 and λ_2 for each T and intensity, so we can find between them a d so that $\lambda_1 < d < \lambda_2$. We have many possibilities for such asymmetrical reflections, so we have many stable oscillator configurations for any T temperature with equal exchange of intensity by radiation. All of these configurations can exist together. At the λ_{max} is the annihilation point where the configurations are symmetrical. The λ_{max} is changing by the Wien's displacement law in many textbooks. $$\lambda_{\max} = \frac{b}{T}$$ where λ_{max} is the peak wavelength, T is the absolute temperature of the black body, and b is a constant of proportionality called *Wien's displacement constant*, equal to $2.8977685(51)\times10^{-3} \text{ m}\cdot\text{K}$ (2002 CODATA recommended value). By the changing of T the asymmetrical configurations are changing too. # The structure of the proton We must move to the higher T temperature if we want look into the nucleus or nucleon arrive to d<10⁻¹³ cm. [2] If an electron with λ_e < d move across the proton then by (5) 2 (m+1) = n with m = 0 we get n = 2 so we need two particles with negative and two particles with positive charges. If the proton can fraction to three parts, two with positive and one with negative charges, then the reflection of oscillators are right. Because this very strange reflection where one part of the proton with the electron together on the same side of the reflection, the all parts of the proton must be quasi lepton so d > λ_q . One way dividing the proton to three parts is, dividing his oscillation by the three direction of the space. We can order 1/3 e charge to each coordinates and 2/3 e charge to one plane oscillation, because the charge is scalar. In this way the proton has two +2/3 e plane oscillation and one linear oscillation with -1/3 e charge. The colors of quarks are coming from the three directions of coordinates and the proton is colorless. The flavors of quarks are the possible oscillations differently by energy and if they are plane or linear oscillations. We know there is no possible reflecting two oscillations to each other which are completely orthogonal, so the quarks never can be free, however there is an asymptotic freedom while their energy are increasing to turn them to the orthogonally. If they will be completely orthogonal then they lose this reflection and take new partners from the vacuum. Keeping the symmetry of the vacuum the new oscillations are keeping all the conservation laws, like charge, number of baryons and leptons. The all features of gluons are coming from this model. The mathematics of reflecting oscillators show Fermi statistics. Important to mention that in the Deuteron there are 3 quarks of +2/3 and -1/3 charge, that is three u and d quarks making the complete symmetry and because this its high stability. #### The weak interaction The weak interaction transforms an electric charge in the diffraction pattern from one side to the other side, causing an electric dipole momentum change, which violates the CP and time reversal symmetry. Another important issue of the quark model is when one quark changes its flavor such that a linear oscillation transforms into plane oscillation or vice versa, changing the charge value with 1 or -1. This kind of change in the oscillation mode requires not only parity change, but also charge and time changes (CPT symmetry) resulting a right handed anti-neutrino or a left handed neutrino. The right handed anti-neutrino and the left handed neutrino exist only because changing back the quark flavor could happen only in reverse, because they are different geometrical constructions, the u is 2 dimensional and positively charged and the d is 1 dimensional and negatively charged. It needs also a time reversal, because anti particle (anti neutrino) is involved. The neutrino is a 1/2spin creator particle to make equal the spins of the weak interaction, for example neutron decay to 2 fermions, every particle is fermions with ½ spin. The weak interaction changes the entropy since more or less particles will give more or less freedom of movement. The entropy change is a result of temperature change and breaks the equality of oscillator diffraction intensity of the Maxwell–Boltzmann statistics. This way it changes the time coordinate measure and makes possible a different time dilation as of the special relativity. The limit of the velocity of particles as the speed of light appropriate only for electrical charged particles, since the accelerated charges are self maintaining locally the accelerating electric force. The neutrinos are CP symmetry breaking particles compensated by time in the CPT symmetry, that is the time coordinate not works as in the electromagnetic interactions, consequently the speed of neutrinos is not limited by the speed of light. The weak interaction T-asymmetry is in conjunction with the T-asymmetry of the second law of thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes the weak interaction, for example the Hydrogen fusion. Probably because it is a spin creating movement changing linear oscillation to 2 dimensional oscillation by changing d to u quark and creating anti neutrino going back in time relative to the proton and electron created from the neutron, it seems that the anti neutrino fastest then the velocity of the photons created also in this weak interaction? A quark flavor changing shows that it is a reflection changes movement and the CP- and T- symmetry breaking. This flavor changing oscillation could prove that it could be also on higher level such as atoms, molecules, probably big biological significant molecules and responsible on the aging of the life. Important to mention that the weak interaction is always contains particles and antiparticles, where the neutrinos (antineutrinos) present the opposite side. It means by Feynman's interpretation that these particles present the backward time and probably because this they seem to move faster than the speed of light in the reference frame of the other side. Finally since the weak interaction is an electric dipole change with ½ spin creating; it is limited by the velocity of the electromagnetic wave, so the neutrino's velocity cannot exceed the velocity of light. # The Strong Interaction - QCD ## **Confinement and Asymptotic Freedom** For any theory to provide a successful description of strong interactions it should simultaneously exhibit the phenomena of confinement at large distances and asymptotic freedom at short distances. Lattice calculations support the hypothesis that for non-abelian gauge theories the two domains are analytically connected, and confinement and asymptotic freedom coexist. Similarly, one way to show that QCD is the correct theory of strong interactions is that the coupling extracted at various scales (using experimental data or lattice simulations) is unique in the sense that its variation with scale is given by the renormalization group. The data for α is reviewed in Section 19. In this section I will discuss what these statements mean and imply. [4] # **Lattice QCD** Lattice QCD is a well-established non-perturbative approach to solving the quantum chromodynamics (QCD) theory of quarks and gluons. It is a lattice gauge theory formulated on a grid or lattice of points in space and time. When the size of the lattice is taken infinitely large and its sites infinitesimally close to each other, the continuum QCD is recovered. [6] Analytic or perturbative solutions in low-energy QCD are hard or impossible due to the highly nonlinear nature of the strong force. This formulation of QCD in discrete rather than continuous space-time naturally introduces a momentum cut-off at the order 1/a, where a is the lattice spacing, which regularizes the theory. As a result, lattice QCD is mathematically well-defined. Most importantly, lattice QCD provides a framework for investigation of non-perturbative phenomena such as confinement and quark-gluon plasma formation, which are intractable by means of analytic field theories. In lattice QCD, fields representing quarks are defined at lattice sites (which leads to fermion doubling), while the gluon fields are defined on the links connecting neighboring sites. #### **QCD** QCD enjoys two peculiar properties: • Confinement, which means that the force between quarks does not diminish as they are separated. Because of this, it would take an infinite amount of energy to separate two quarks; they are forever bound into hadrons such as the proton and the neutron. Although analytically unproven, confinement is widely believed to be true because it explains the consistent failure of free quark searches, and it is easy to demonstrate in lattice QCD. Asymptotic freedom, which means that in very high-energy reactions, quarks and gluons interact very weakly. This prediction of QCD was first discovered in the early 1970s by David Politzer and by Frank Wilczek and David Gross. For this work they were awarded the 2004 Nobel Prize in Physics. There is no known phase-transition line separating these two properties; confinement is dominant in low-energy scales but, as energy increases, asymptotic freedom becomes dominant. [5] #### **Color Confinement** When two quarks become separated, as happens in particle accelerator collisions, at some point it is more energetically favorable for a new quark-antiquark pair to spontaneously appear, than to allow the tube to extend further. As a result of this, when quarks are produced in particle accelerators, instead of seeing the individual quarks in detectors, scientists see "jets" of many color-neutral particles (mesons and baryons), clustered together. This process is called hadronization, fragmentation, or string breaking, and is one of the least understood processes in particle physics. # **Electromagnetic inertia and mass** # **Electromagnetic Induction** Since the magnetic induction creates a negative electric field as a result of the changing acceleration, it works as an electromagnetic inertia, causing an electromagnetic mass. [1] #### The frequency dependence of mass Since E = hv and $E = mc^2$, $m = hv/c^2$ that is the m depends only on the v frequency. It means that the mass of the proton and electron are electromagnetic and the result of the electromagnetic induction, caused by the changing acceleration of the spinning and moving charge! It could be that the m_o inertial mass is the result of the spin, since this is the only accelerating motion of the electric charge. Since the accelerating motion has different frequency for the electron in the atom and the proton, they masses are different, also as the wavelengths on both sides of the diffraction pattern, giving equal intensity of radiation. #### **Electron - Proton mass rate** The Planck distribution law explains the different frequencies of the proton and electron, giving equal intensity to different lambda wavelengths! Also since the particles are diffraction patterns they have some closeness to each other. [2] There is an asymmetry between the mass of the electric charges, for example proton and electron, can understood by the asymmetrical Planck Distribution Law. This temperature dependent energy distribution is asymmetric around the maximum intensity, where the annihilation of matter and antimatter is a high probability event. The asymmetric sides are creating different frequencies of electromagnetic radiations being in the same intensity level and compensating each other. One of these compensating ratios is the electron – proton mass ratio. The lower energy side has no compensating intensity level, it is the dark energy and the corresponding matter is the dark matter. ## The potential of the diffraction pattern The force that holds protons and neutrons together is extremely strong. It has to be strong to overcome the electric repulsion between the positively charged protons. It is also of very short range, acting only when two particles are within 1 or 2 fm of each other. 1 fm (femto meter) = 10^{-15} m = 10^{-15} m = 0.0000000000001 meters. The qualitative features of the nucleon-nucleon force are shown below. There is an extremely **strong short-range repulsion** that pushes protons and neutrons apart before they can get close enough to touch. (This is shown in orange.) This repulsion can be understood to arise because the quarks in individual nucleons are forbidden to be in the same area by the Pauli Exclusion Principle. There is a **medium-range attraction** (pulling the neutrons and protons together) that is strongest for separations of about 1 fm. (This is shown in gray.) This attraction can be understood to arise from the exchange of quarks between the nucleons, something that looks a lot like the exchange of a pion when the separation is large. The density of nuclei is limited by the short range repulsion. The maximum size of nuclei is limited by the fact that the attractive force dies away extremely quickly (exponentially) when nucleons are more than a few fm apart. Elements beyond uranium (which has 92 protons), particularly the trans-fermium elements (with more than 100 protons), tend to be unstable to fission or alpha decay because the Coulomb repulsion between protons falls off much more slowly than the nuclear attraction. This means that each proton sees repulsion from every other proton but only feels an attractive force from the few neutrons and protons that are nearby -- even if there is a large excess of neutrons. Some "super heavy nuclei" (new elements with about 114 protons) might turn out to be stable as a result of the same kind of quantum mechanical shell-closure that makes noble gases very stable chemically. [7] ## **Experiments with explanation** We present the results of experimental and theoretical study of the scattering of low energy p μ atoms in solid hydrogen cooled to 3 K. The resulting emission of low energy p μ atoms from the hydrogen layer into the adjacent vacuum was much higher than that predicted by calculations which ignored the solid nature of the hydrogen. [11] #### **Conclusions** The finding that electrons and muons aren't produced equally in certain particle decays may hint at a crack in the standard model. Lattice QCD gives the same results as the diffraction theory of the electromagnetic oscillators, which is the explanation of the strong force and the quark confinement. [8] The resolution of the Proton Radius Puzzle is the diffraction pattern of the electromagnetic oscillations, giving different proton radius for muon-proton diffraction. #### References [1] The Magnetic field of the Electric current and the Magnetic induction http://academia.edu/383335/The Magnetic field of the Electric current [2] 3 Dimensional String Theory http://academia.edu/3834454/3 Dimensional String Theory [3] Color confinement - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Color confinement [4] INTRODUCTION TO LATTICE QCD http://arxiv.org/abs/hep-lat/9807028 [5] QCD http://en.wikipedia.org/wiki/Quantum chromodynamics [6] http://en.wikipedia.org/wiki/Lattice QCD [7] http://www.cartage.org.lb/en/themes/sciences/physics/NuclearPhysics/WhatisNuclear/Forces/Forces.htm [8] Theory of Everything http://www.academia.edu/4168202/Theory of Everything - 4 Dimensional String Theory [9] The proton radius puzzle http://phys.org/news/2013-11-proton-radius-puzzle-quantum-gravity.html [10] Muonic hydrogen and the proton radius puzzle http://arxiv.org/abs/1301.0905 [11] Scattering of $p\mu$ muonic atoms in solid hydrogen http://arxiv.org/pdf/nucl-ex/0212005.pdf [12] A Challenge to Lepton Universality http://physics.aps.org/articles/v7/102 [13] A Violation of Lepton Universality? http://profmattstrassler.com/2012/06/01/a-violation-of-lepton-universality/